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Abstract

I propose a procedural model of random choice called visual choice based on the eye move-
ments of individuals. The decision maker fixates randomly on alternatives, and performs
saccades to other alternatives based on the fixation point. The choice probabilities are de-
termined using a random tie-breaking between these saccaded alternatives and weighting
according to the fixation probabilities, both formulated using the well-known Luce rule.
I discuss the cases of fixation-independent and fixation-dependent saccades. The former
connects to the recent literature extending the Luce rule giving a procedural interpretation
for these choice rules. For the latter, I discuss a special case called satisficing visual choice
which determines the choice probability of an alternative x by calculating the weighted av-
erage of the contribution coming from the fixated alternatives strictly dominated by x. The
main results of the model are related to the rationality properties of this procedure, and a
behavioral characterization result based on conditions imposed on the choice data.

1 Introduction

Imagine that you want to cook a dinner for your family, and you decided to prepare something
involving fish. Being indecisive about which fish to cook, you go to the market and look at the
fish section. At a moment, you find yourself looking at the nicely arranged salmon options.
However, this does not stop you to check other options in a quick fashion even without rotating
your head. Of course, this does not imply that you are going to buy anything you see, but if
you can find something better than salmon during these quick eye movements, you might end
up buying it. At the end of the day, you cook turbot at home, and decide to watch a movie
together after the dinner. The streaming channel you own presents multiple suggestions, some
of which attract your attention immediately. Finding yourself looking at the second suggested
option, you realize that there is a movie of your favourite actor just below it. Because the topic
of that movie seems boring, you decide to watch the movie suggested by the platform.

What is common to these stories? A decision-maker (henceforth DM) has a certain goal (like
cooking a dinner or watching a movie) and there is a set of associated choice options constitut-
ing the choice problem (the alternatives present in the fish section or the movies on the online
streaming platform). The DM sees these options as they are presented to her, but whether she
will be aware of these or not will depend on her vision. The salient options might attract her
attention towards these, resulting in a relatively longer period of looking at these alternatives.
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In the literature of vision science, one says that the DM fixates on these options, and it is further
known that an individual can focus on only a small region of her visual field at a single point of
time. I fix this to be a single alternative available in the menu (such as salmon or the suggested
movie). Moreover, it is known that the human eye performs saccade movements after fixating
at a certain point. If the DM further likes an option she saccaded to (turbot or the movie of the
favourite actor), then she might end up choosing this instead of what she fixated. I present a
model with the goal of capturing these type of situations, which can be seen as a part of the
fundamental process underlying how people decide due to its connection with how they see
their environment.

The first goal of this paper is to provide a tractable framework that reflects how people make
decisions based on what they see. Consider the following fairly general choice rule:

ρx(M) := ∑
y∈M

q(M,y) ·p(M,y)(x)

The mapping q determines the fixation distribution of the DM in menu (or choice problem)
M. The DM looks at y with probability q(M,y) in M. This pair (M,y) then determines the
conditional choice probabilities of all alternatives available in M, denoted by p(M,y).1 However,
this rule is empirically uninteresting due to its generality, but provides the foundation for the
choice rule that will be called visual choice. Assume that the DM is endowed two (strictly)
positive value functions u and v, which are interpreted respectively as the salience value that
determines the fixation probabilities and saccade probabilities.2 Furthermore, assume that the
DM is also endowed with a saccade correspondence s that determines the alternatives DM
performs saccadic eye movements to conditional on a fixation point. The choice rule is then
defined using the well-known Luce rule:

ρx(M) := ∑
y∈M

u(y)
u(M)

·


v(x)

v(s(y,M)) if s(y,M) ̸= /0 & x ∈ s(y,M)

1 if s(y,M) = /0 & x = y
0 o.w.

This choice rule reflects the process of visual decision-making described through examples pre-
viously. The DM looks at an alternative y in M with a probability equal to its relative salience
value in M.3 After fixating at this point, she performs saccades to alternatives in s(y,M), and
then chooses an alternative x ∈ s(y,M) again with its relative salience value in these saccaded
alternatives. When the DM performs no saccades, the fixation point is chosen with probability
1, which can interpreted as a status-quo effect.4 If furthermore saccade correspondence is ra-
tional in the sense that it satisfies the weak axiom, then this choice procedure becomes rational

1This can be interpreted also as a stochastic version of choice problem with a status-quo/reference point as in
Masatlioglu and Ok [34] after the DM fixates at y in M.

2The reason for assuming two separate salience mappings is due to the dynamic nature of fixation and saccade.
More precisely, if one imagines a two-period decision problem, then one can think of u as the salience mapping
for time 0, while v is the salience mapping for time 1. Even without temporal interpretation, it is possible that
fixation and saccade are affected by different salience functions. Alternatively, v can be interpreted as Luce value
which is used to tie-break between different alternatives saccaded by the DM.

3See Bundesen [4] for a support of the view that salience is determined using such formula, although with
some additional ingredients that are not modeled in this paper.

4As opposed to the usual notion of choice correspondence, I allow saccade correspondence to be empty-valued,
but mostly use the induced correspondence which is everywhere nonempty due to the assumption I made about
the status-quo effect. More through explanation will be provided later on.
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visual choice. I discuss two cases of the visual choice that depend on the properties of the
saccade correspondence s.

First, I assume that s is fixation-independent, i.e. s(x,M) = s(y,M) for any fixation point
x,y ∈ M, which connects the visual choice to the recent literature that tries to extend the Luce
rule in order to deal with its implausible implications such as nonzero choice probabilities.
Looking at this special case has two benefits: the choice rules in the literature which do not
have a procedural interpretation gain an interpretation in this terms using visual choice, and
also their characterization results provide an empirical test for the fixation-independent visual
choice. In particular, if s is nonempty-valued and fixation-independent, then the visual choice
becomes equivalent to the general Luce model of Echenique and Saito [13]. Thus, general Luce
can be interpreted as a visual choice rule in which fixations do not matter in determining the
saccades, and choice probabilities are only determined by the saccades made in the correspond-
ing menu. If furthermore the visual choice is rational, meaning that the saccades performed can
be rationalized, then one has the preference-oriented Luce rule of Dogan and Yildiz [11]. Two
extreme cases of this result in the Luce rule: when the DM perform no saccades or she performs
saccades to all alternatives in the menu.

After discussing the fixation-independent case, I relax the visual choice to be fixation-dependent.
Let ⪰ be a reflexive, transitive and antisymmetric binary relation (a partial order) which rep-
resents the dominance relation of the DM: for example, if alternatives can be represented as
bundles of features, then an alternative dominates another one iff it has any feature the other
alternative has (the vector ordering).5 I assume that the DM performs saccades only to alter-
natives that are strictly dominate the fixation point, and if there are none, then the status-quo
effect is in power, meaning that the DM chooses the fixation point. I call this specific choice
rule satisficing visual choice, where the satisficing level is determined by the fixation point.

A core goal of the satisficing visual choice (svc) is to analyze the rationality of this choice pro-
cedure once top-down processes (determined by the dominance relation) is allowed to influence
the bottom-up processes (determined by visual salience functions u and v). Therefore, I start
by discussing the rationality of the svc. This discussion makes use of several properties used in
the literature (such as regularity, monotonicity, and stochastic transitivity), the recent stochastic
rationality measure developed by Ok and Tserenjigmid [38], and finally models of deliberate
randomization. To connect the top-down to the bottom-up, I define the notion of compatibility
and strong compatibility. On top of the rationality stemming from the consistency of the sac-
cade correspondence conditional on the fixation point, these notions further provide connection
by making the visual value functions u and v compatible with preferences ⪰.6 Without any con-
dition of compatibility, satisficing visual choice allows violations of regularity, monotonicity,
and even weak stochastic transitivity, and it is able to capture well-known behavioral regular-
ities such as attraction effect and compromise effect. If furthermore u is compatible, then svc
satisfies moderate stochastic transitivity, but still not necessarily strong stochastic transitivity
(even under strong compatibility). This is consistent with the experimental evidence that peo-
ple obey moderate stochastic transitivity, even though they frequently violate the strong version
(see Tversky [48] and Rieskamp et al. [42]).

The more developed results use the stochastic rationality measure developed by Ok and Tseren-
jigmid. A random choice function (rcf) is called maximally (minimally) rational if it is more

5This will be the main interpretation I will use.
6Compatibility of u here means that if x ⪰ y (x ≻ y) then u(x)≥ u(y) (u(x)> u(y)). It is similarly defined for

v. The notion of strong compatibility will be defined in the main body.
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(less) rational compared to any other rcf. For the first result I fix the preferences and assume
further it is complete. In addition, I assume that both of the visual value functions are compat-
ible with the underlying preferences, that is, both u and v are compatible with ⪰. I show that
even in this case no svc is maximally or minimally rational, although one can always compare
different rcf’s which are svc’s by changing the parameters u and v. The second result goes one
step further and characterizes when the DM’s choices can be called maximally rational under
the assumption of strong compatibility. This happens either when she cannot compare any al-
ternatives (which is equivalent to the Luce rule) or there is a unique alternative that dominates
the rest of the alternatives with the remaining alternatives being incomparable (which is equiv-
alent to a slight variant of Luce rule I call an almost Luce rule). Surprisingly, both these cases
involve minimal levels of comparison with respect to the preferences, while the choice data
might reveal that the DM is maximally rational. In a sense, if the DM has minimal level of de-
cisiveness and "leaves" herself only to the bottom-up processes (involving usually unconscious
processes), then the choices of the DM are as if they are maximally rational.

After discussing the rationality features, I provide an empirical characterization result. The
identification of preferences is easily handled from binary choice problems, and it is by defini-
tion unique. However, the identification for the visual value functions u and v are more subtle.
Indeed, full identification is impossible, and without identifying u one cannot identify v. First, I
provide when and why identification of u is possible, and in which cases it cannot be identified.
Then I do a similar analysis for the saccade value v. The characterizing axioms can be separated
into three groups. Those which are mainly related to rationalizability and hence the underlying
preferences (dominance transitivity, rationalizability, and independence from incomparable al-
ternatives), those that are related to the construction of the fixation probabilities and relate it
to regularity violations (cyclical independence, fixation consistency, and bounded fixation ra-
tio), and finally the condition that imposes consistency on saccade values (path independent
saccade).7 Rationalizability puts a minimal requirement for an alternative to be chosen with
strictly positive probability in a menu: an alternative should either dominate at least one other
alternative or should be incomparable to the rest. Dominance transitivity says that if x and y are
chosen with probability 1 in menus {x,y} and {y,z}, then x should be chosen with probability
1 in {x,z}. Both independence from incomparable alternatives and cyclical independence are
relaxations of Luce’s IIA, which in a sense restricts the independence menus that only differ by
incomparable alternatives to the rest of the menu and paths that involve alternatives that consists
of consecutively incomparable alternatives. The rest of the conditions guarantee that fixation
and saccade probabilities are well-defined and consistent. Fixation-consistency posits that the
probability of not looking at an alternative gives the relative fixation probability increase due
to adding that alternative, while bounded fixation ratio puts an upper bound on this relative
fixation ratio using the relative probability changes and hence the relative size of regularity
violations induced by this addition.

This paper is mainly related to two literatures. Firstly and more closely, the procedural model
proposed in this paper is a random choice model, a growing literature that is partly inspired from
the cognitive mechanisms in the decision-making process. Three literatures stand out in close
connection to visual choice: the models generalizing the well-known Luce rule, the models that
treat attention as a random process while keeping preferences fixed, and finally the models that
assume that reference-points affect the choices. There are several models in the recent literature

7Some of these conditions are familiar from the literature. Dominance transitivity and cyclical independence
are used by Echenique and Saito [13] to characterize general Luce model, even though the underlying dominance
relation in this paper and here are different.
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that deal with the limitations of the Luce rule such as general Luce model of Echenique and
Saito [13], limited consideration Luce model of Ahumada and Ulku [1], nested logit model
of Kovach and Tserenjigmid [28], focal Luce model of Kovach and Tserenjigmid [29], and
perception-adjusted Luce model by Echenique et al. [14]. Visual choice also makes use of
Luce rule formulation, but the model uses it for the formation of salience and not try to solve
the problems related to it. Another stream of these models fix the preferences of the DM by
assuming it satisfies the main properties of rationality, and relax the requirement that people are
perfectly attentive, treating it as a random process. Two prominent models of random attention
are proposed by Manzini and Mariotti [33] and Cattaneo et al. [6]. The main connection of this
model to the models of attention is that it proposes a particular process of attention formation
using the eye movements of individuals. Even though visual choice is not nested by the random
attention model of Cattaneo et al., imposing the rationality condition through the weak axiom
on saccade correspondence makes it a model of random attention, which implies that there
exists a particular type of random attention process and an associated complete preference
relation that models the same random choices. A final type of models focus on the impact
of the reference points on the final choices of the DM which is initiated by the deterministic
model presented by Masatlioglu and Ok [34], recently endogenized using a random reference
selection by Kibris et al. [26]. The fixation point can be interpreted as a reference point for
the DM, and indeed the specific case satisficing visual choice bears close resemblances to logit
random reference model, even though it is not nested by it. An advantage of svc compared to
this model is that it uses a small number of primitive parameters, while in random reference
model there is a complete preference relation associated with each alternative in addition to the
salience function.

In addition to the random choice literature, the model presented in this paper is related to the lit-
erature on the visual system of humans. Indeed, this literature forms the basis of the procedural
model presented here. The literature on vision expands into different branches of sciences; in-
cluding neuroscience, medicine, psychology, physics and computer science, and it has its own
branch called vision science. Although the literature is vast, the model presented here relies
on the fundamental eye movements, and postulates a choice procedure based upon these. It is
known that eye performs variuous types of movements such as saccadic movements and smooth
pursuit movements (although these are not the exclusive list of movements). Even though both
movements determine the gaze direction, the fixation point is largely determined by the slower
smooth pursuit movements, while saccadic movements are mostly unaware quick movements
after eyes are fixated at a certain point. The notion of attention, which is also very prominent
in the economics literature, usually depends on how the visual system works and what is per-
ceived to be salient in a natural scene. Because the information load in a typical scene is very
high, it is suggested that the human visual perception occurs in two stages. In the first stage,
the simple features in the environment are processed in a parallel fashion (preattentive mode),
while in the second stage the focus of attention is directed at a particular location in the visual
field using the data collected in the first stage (attentive mode) (see Treisman [46] and Treisman
and Gelade [47]). It is articulated that the neural system prepares a saliency/conspicuity map
which is responsible to filter out objects that are salient compared to the other objects in the
environment, which is computed using the the features objects have. A prominent approach is
the winner-take-all mechanism which chooses the most salient point in the environment, and
passes to the next most salient location using the inhibition-of-return (see Itti and Koch [24]
and Koch and Ullman [27]). Luce rule is a normalization to measure the relative saliency and
hence the probability of being the fixation point, and it is compatible with the principles related
to this approach. The model here also accounts for the saccadic movements, which are hypoth-
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esized to be predetermined conditional on the fixation point, and this is reflected through the
saccade correspondence of the DM that depends on the fixated point. Thus, the overall proce-
dure postulates that at a moment of fixation at x, the individual makes a probabilistic selection
depending on the saccade correspondence conditional on x, and the final choice probabilities
are determined by aggregating different fixation points through the probability of viewing them
using their relative saliences.

The structure of the paper is as follows. In Section 2, I provide the definition of the visual choice
model. The deterministic version of the model and its characterization is provided in Section 3.
Then, I start analyzing the (random) visual choice by assuming fixation-independence in Sec-
tion 4. I relax the assumption of fixation independence in Section 5, and focus on a specific
type of saccade correspondence. First, I discuss the rationality properties of the choice proce-
dure induced by this correspondence in Section 5.1, and then provide a characterization result
in Section 5.2. In Section 5.3, I discuss the comparative statics of the model, and also its rela-
tion to the random choice literature that is closest to this work. In Section 6, I discuss further
issues not discussed in the main body, and conclude in Section 7 by pointing out to limitations
in visual choice. All the proofs that are not in the main body are in the Appendix, as well as
some further related literature discussion.

2 Visual Choice

Let X be the grand set of alternatives. The decision-maker (henceforth DM) chooses from
a menu M which is a nonempty finite subset of X . The set of all such menus is denoted as
X. A random choice function (rcf) is a probability distribution ρ : X ×X → [0,1] such that
ρ(x,M) = 0 if x /∈ M and ∑x∈M ρ(x,M) = 1. I will denote ρ(x,M) simply as ρx(M). Consider
an arbitrary menu M. First, I am going to provide a general model which is consistent with
the visual interpretation. The DM fixates at alternatives in M randomly, which can be mod-
eled by a probability distribution q : X×X → [0,1] such that q(M,x) = 0 for any x /∈ M and
∑x∈M q(M,x) = 1 for any menu M. Once DM fixates her eyes at y in M, she chooses an alter-
native in the menu (including possibly y) with some probability depending on y. Formally, let
p(M,y)(x) denote the probability of choosing x conditional on y in menu M. The induced choice
probability gives the following choice rule8:

ρx(M) := ∑
y∈M

q(M,y) ·p(M,y)(x)

This choice rule is unfalsifiable. To see, consider a random choice data ρ̃ and assume that
p(M,y)(x) = 1 iff x = y, letting q(M,y) = ρ̃y(M). This shows that any choice data can be accom-
modated by the above rule. Therefore, I am going to put additional structure that is inspired by
the studies in vision science, and then define the visual choice.

The main concepts coming from the vision literature is the notion of salience mapping which
determines where the DM looks at in a particular environment, and the notion of ballistic move-
ment for the saccades, that says the saccadic movements are predetermined given a particular
fixation point. Assume that the DM is endowed with a pair of functions (u,v) defined on X
both taking strictly positive real values. It is possible that these two are equal to each other,
which I am going to assume in some cases. Let u(M) := ∑y∈M u(y) and v(M) := ∑y∈M v(y).

8Towal et al. [45] formulated a very similar model with much different ingredients, which relies on a drift-
diffusion model (ddm).
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For the saccadic movements, let s : X ×X→X be a saccade correspondence such that s(x,M)⊆
M for any M ∈ X, which is allowed to be empty.9 If the DM does not perform any saccades
from x so that s(x,M) = /0, I assume that the DM chooses x itself conditional on fixating at x.
Once fixation at x occurs, I assume that the DM will perform saccades to s(x,M).

Definition 1. A rcf ρ is called visual choice (vc) if for each menu M ∈ X and x ∈ M there is a
pair of functions (u,v) such that u,v : X → R++ and a saccade correspondence s : X ×X → X
where s(x,M)⊆ M for any M ∈ X such that:

ρx(M) := ∑
y∈M

u(y)
u(M)

·


v(x)

v(s(y,M)) if s(y,M) ̸= /0 & x ∈ s(y,M)

1 if s(y,M) = /0 & x = y
0 o.w.

(1)

The analysis of visual choice can be categorized into two subcases: fixation-independent and
fixation-dependent visual choice. In fixation-dependent visual choice, the alternatives that are
saccaded by the DM conditional on the fixation point does not depend on the fixation point, so
s(x,M) = s(y,M) for any x,y ∈ M and M ∈ X. As will be shown later, the fixation-independent
case is connected to the recent literature that extends the Luce model to deal with the limitations
such as the nonallowance of zero choice probabilities. While considering this case, I assume
that s is nonempty. A special case is when s is rational in the sense that it satisfies weak axiom
of revealed preference: s(M′)∩M = s(M) for any M ⊆ M′ provided that ŝ(M′)∩M ̸= /0.

For the case of fixation-dependence, I will focus on a special case which exemplifies a type of
rational visual choice, called satisficing visual choice. One can define the following induced
saccade correspondence ŝ if s is allowed to be fixation-dependent for ease of notation:

ŝ(x,M) :=

{
s(x,M) if s(x,M) ̸= /0
{x} o.w.

Using the induced correspondence, the rationality condition amounts to the following for the
fixation-dependent case:

• ŝ(x,M′)∩M = ŝ(x,M) for any x ∈ M ⊆ M′ provided that ŝ(x,M′)∩M ̸= /0.

Let ⪰ be a partial order defined on X , which is intended to capture the dominance relation.
Interpreting an alternative x using the feature space approach, I will use the vector ordering
induced by the feature comparisons, so x ⪰ y iff x is at least good as y with respect to all
features. If two alternatives x and y are incomparable according to ⪰, I will denote this as
x ▷◁ y. Partition the alternatives in X according to their position with respect to y using ⪰.
Finally, let D(y) := {x ∈ X : x ≻ y}, W (y) := {x ∈ X : y ≻ x}, and Inc(y) := {x ∈ X : x ▷◁ y}.
Denote the restriction of D(y) to menu M as D(y,M), and similarly for others. The satisficing
visual choice is defined next.

Definition 2. A rcf ρ is called satisficing visual choice (svc) if it is visual choice such that there
is a partial order ⪰ and s(x,M) = D(x,M), which implies that:

ρx(M) := ∑
y∈M:x⪰y

u(y)
u(M)

·

{
v(x)

v(ŝ(y,M)) if x ∈ ŝ(y,M)

0 o.w.
(2)

9This is just a different interpretation of choice correspondence with a reference point/status-quo formulated
by Masatlioglu and Ok [34] and Rubinstein and Zhou [43].
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To see that this exemplifies rational visual choice, note that warp conditional on the fixation
point implies that for each fixation point y, there is a complete preference relation ≿y that
rationalizes saccade correspondence, so ŝ(y,M)≡ max(M,≿y). Thus, ≿y will be the satisficing
relation that is defined with respect to y. Assume that x ∼y z if one of the following holds:
x,z ∈ D(y), x,z ∈ W (y)∪ Inc(y) or x = y = z. The strict part of ≿y, ≻y, is defined as follows:
x ≻y z if x ∈ D(y) and z /∈ D(y) or x = y and z ∈ W (y)∪ Inc(y). Given fixation at y in menu
M, any alternative that is satisficing with respect to y can be saccaded from y. This implies
according to the definition of ≿y that:

max(M,≿y) =

{
{y} if D(y,M) = /0
D(y,M) if D(y,M) ̸= /0

so that max(M,≿y) = D̂(y,M).

The main interpretation of visual choice is based on feature spaces. Assume that X ⊆ Rk
+ is

the feature space for k ≥ 1 where xi denotes the level of feature i in alternative x. A special
case is when each feature is binary and any alternative x is defined as a vector of 0−1’s where
xi = 1 iff x has feature i. The salience value u and the utility value v can be computed using
the underlying feature space. In particular, I am going to use an additive specification in this
paper. Accordingly, let u(x) = ∑i∈{1,...,k}αixi and v(x) = ∑i∈{1,...,k}βixi where αi,βi > 0 for all
i. Since u and v are assumed to be strictly positive, I will take any x ∈ X to have at least one
feature i such that xi > 0. The feature space can also determine the saccade correspondence. For
example, an individual might only perform saccades to alternatives that dominate the fixated
alternative in all dimensions, or alternatives that are sufficiently differentiated from it. I will
assume that both fixation probabilities and conditional choices due to saccades are the results
of the Luce rule, where the latter is only applied on the saccade correspondence. When using
this interpretation, I will focus on the k = 2 case unless otherwise specified.

The visual choice can be interpreted as follows. The features of each alternative y determine
their relative salience in a menu M, computed using the Luce rule u(y)

u(M) , which gives the proba-
bility of fixating at y in M. Given fixation at y, the individual performs saccadic eye movements
to other alternatives in the menu, determined through saccade correspondence s(y,M). Each al-
ternative in the correspondence has a probability of being chosen according to their relative
salience computed using v and Luce rule, but now only using the alternatives that are in the
saccade correspondence. So, if x ∈ s(y,M), then x is chosen with (at least) u(y)

u(M) ·
v(x)

v(ŝ(x,M)) prob-
ability from M due to being saccaded from x. The DM does not fixate on only one alternative
due to the inhibition of return principle, and continue to fixate on other alternatives with a prob-
ability equal to their relative salience value computed using the same rule, performing saccadic
movements conditional on these fixation points. Thus, the choice probability of an alternative
x in M is determined by the weighted aggregation of all these saccades from fixation points.

It is important to note that there are two limitations of this formulation. First, the strict positivity
of u implies that the DM fixates on all alternatives with positive probability, which might not be
the case in reality. I do not view this as a serious limitation, since the alternatives that DM does
not look at can be modeled using sufficiently small but positive u value. The more important
limitation is that the salience value of an alternative determined through u and v is independent
from the menu, and only depends on its underlying features. This can be also unrealistic in
certain contexts. I will try to address this limitation briefly in further discussion using the
salience function formulated by Bordalo et al. [3].
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Before proceeding to analyze the visual choice, I will provide an illustrative example in order
to illuminate the choice procedure proposed in the paper.
Example 1.

Assume that u,v values are equal for all alternatives. According to the feature space interpre-
tation, this holds when αi = βi for any dimension i. I will consider two cases: in the first one,
the saccades will be independent from the fixation point. A case in which this is satisfied is
when s(x,M) = s(M) for any x ∈ M and M ∈ X. When this is the case, the individual fixates at
each alternative with equal probability of 1

|M| . Since the individual is assumed to saccade to all
alternatives in M (including x, which is called a refixation in the vision science terminology),
each alternative in M gets an equal share from fixation at x, equal to 1

|M| . Therefore, the choice
probability of any alternative x in M is given by:

ρx(M) = ∑
y∈M

1
|M|

· 1
|M|

=
1
|M|

so that each alternative is chosen with equal probability. Thus, if each alternative has equal
salience and utility value with the assumption that the DM performs saccades to all alternatives,
then each alternative is chosen with equal probability according to visual choice.

For the latter example, assume that the individual is endowed with a complete and asymmetric
preference relation ≻ on X . Let k(M) denote the kth worst alternative in M, and assume that the
individual only saccades to alternatives that strictly dominate the fixation point.10 This implies
the following choice probabilities:

ρ
k(M)(M) =

1
|M| ∑

j<k

1
|M|− j

if k(M)≤ |M|−1, and ρ|M|(M)(M) = ρ |M|−1(M)+ 2
|M| . So, the DM fixates on each alternative

with a uniform probability, and the contribution of each is again uniformly distributed over the
alternatives that dominate it.
Example 2.

Again consider the previous setting with u = v. The choice probabilities can be written more
generally as an adjusted Luce rule in the following form for the case of svc:

ρx(M) = ∑
x≻y

u(y)
u(M)

· u(x)
u(D(y,M))

=
u(x)
u(M)

· ∑
x≻y

u(y)
u(D(y,M))

≡ pu
x(M) · ∑

x≻y
ũ(y,M)

where pu denotes the Luce choice probability with value function u and ũ(y,M) is the rationalizability-
adjusted value of an alternative y in M. The assumption that u = v makes the procedural in-
terpretation more apparent. More precisely, the first component is the fixation probability of
alternative x in menu M determined by salience values u, and the second component finds the
total saccade probability from alternatives that x strictly dominates. While the first expression

10Alternatively, one can interpret this as if the individual saccades to all alternatives in the menu, but only the
ones that are strictly better are taken seriously by the DM.
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is exactly the Luce rule, note that the second expression is not exactly so because the denomi-
nator only accounts the value of alternatives that dominate y. Let X = {x,y,z} with x ≻ y ≻ z.
In any binary menu, choice becomes deterministic and the alternative which dominates the
other one is chosen with probability 1. In the case of three alternatives, the induced choice
probabilities are as follows:

ρx(X) =
u(xy)
u(X)

+
u(z)
u(X)

u(x)
u(xy)

ρy(X) =
u(y)
u(X)

u(z)
u(xy)

ρz(X) = 0

Thus, the worst alternative is chosen with zero probability, while other alternatives are chosen
with strictly positive probability. In particular, the difference in probabilities of these alterna-
tives can be written as follows:

ρx(X)−ρy(X) =
u(xy)
u(X)

+
u(z)
u(X)

· u(x)−u(y)
u(x)+u(y)

≡ pu
xy(X)+ pu

z (X) ·σbgs(x,y)

The last line says that the difference of choice probabilities are an expression in terms of choice
probabilities of the Luce form and salience function (σ ) defined by Bordalo et al [3] (bgs).

Next, I am going to provide a deterministic version of the visual choice in order to make the
procedural aspect of the model clearer, and after that start to analyze the visual choice.

3 Deterministic Visual Choice

In this section, I will focus for simplicity on choice functions that outputs a single alternative
for each menu as the choice data. Assume that the salience value u induces an asymmetric
complete ordering over the alternatives, denoted as ≻u, and similarly for v, denoted ≻v. The
DM fixates on a unique alternative, which is the most salient alternative from the menu:

f (M) := max(M,≻u)

where f (M) denotes the fixated alternative in M. This alternative determines which alterna-
tives are looked upon conditional on this, ŝ( fi(M),M). The deterministic visual choice can be
defined as:

c(M) := max(ŝ( fi(M),M),≻v)

There are two cases to consider given the definition of visual choice:

• s is fixation-independent.

• s is fixation-dependent.

Assume s is fixation-independent. Then, one can view s as a consideration set. In the litera-
ture, there are several models that characterizes choices using different assumptions on s. Two
relevant cases (which will become clear in the analysis of visual choice) are when s satisfies
the attention filter property (af) and weak axiom of revealed preference (warp). The former is
defined and characterized by Masatlioglu et al. [36], which assumes that ŝ(M) = ŝ(M \{x}) for
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x /∈ ŝ(M). The latter property corresponds to the case of rational visual choice, and this means
that ŝ(x,M) is equivalent to max(M,≿) for a complete preference relation.

Assume s is fixation-dependent. Applying the satisficing visual choice to the deterministic
setting, let s(x,M) = D(x,M) given the partial order ⪰, and define the choice function as:

c(M) = max(D̂( f (M),M),≻v)

Assume that a choice reversal occurs when one removes an alternative from M that is not chosen
from it, i.e. x ̸= c(M) and c(M) ̸= c(M \ {x}). This is only possible if x is itself the fixation
point. To see, note that if x is not the fixation point, then it can change the choice only if it
is one of the saccaded alternatives. If there is a unique saccaded alternative, then it is equal
to the chosen alternative, so this cannot be the case. So, |D̂(x,M)| > 1, and by the definition
of D, D̂(x,M) \ {y} = D̂(x,M \ {y}). Hence, the chosen alternative cannot change unless y is
itself the fixation point. Let f R(M) be the revealed fixation point in menu M and ≻R

u denote the
revealed preferences according to u. Thus:

x ̸= c(M) ̸= c(M \{x})→ x = f R(M) & x ≻R
u z ∀z ∈ M \{x}

By rationality of the visual choice, x will be the fixation point in any menu M′ that is a subset
of M and x ∈ M′. Any z except x cannot be the fixation point in M′ provided that x ∈ M′. If one
furthermore knows that z ̸= c(M′), then removal of z from M′ cannot change the choice of the
DM.11 This shows the necessity of the following condition.

Condition 1. Let M,M′ be two menus s.t. {x,c(M)} ⊆ M and x ∈ M′. If c(M) ̸= c(M \ {x})
and x ̸= c(M), then c(M′) = c(M′ \{z}) for all z ∈ M \{x,c(M′)}.

If there is no choice reversal, then Condition 1 implies that c(M) = c(M′) for any M′ ⊆ M with
c(M) ∈ M′. If this is the case, let c(M)≻R

u x for x ̸= c(M) and x ∈ M. Thus, f R(M) = c(M) in
this case.

The previous part provided the identification strategy for the fixation point and hence the re-
vealed u-order. For the identification of the saccade correspondence, one can rely on this and
the information from binary menus. Assume that x= f R(M) for some M ⊇{x,y} and c(xy)= y.
Because of rationality, x is also the fixated point in {x,y}, and therefore c({x,y}) = y implies
that y ⪰R x where ⪰R denotes the revealed dominance relation. Using this, one can construct:

DR(M) = {x ∈ M \{ f R(M)} : c({x, f R(M)}) = x}

From DR(M), one can define the induced correspondence D̂R(M). The following is a necessary
condition which guarantees that the revealed dominance relation is a partial order.

Condition 2. Let x1, . . . ,xk be a sequence of alternatives such that f R({xi,xi+1}) = xi+1 for all
i ≤ k−1. If c({xi,xi+1}) = xi for all i ≤ k−1, then c({x1,xk}) = x1.

Finally, let ≻R
v be the revealed v-order and x ≻R

v y if x,y ∈ DR(z,M) for some M ⊇ {x,y,z} and
x = c(M). The following is implied by the acyclicity of the v-order.

Condition 3. Let M1,M2, . . . ,Mk be a sequence of menus such that {xi,xi+1}⊆Mi with x1, . . . ,xk
being distinct and xk+1 ≡ x1. If xi+1 ∈ DR(Mi) for i ≤ k − 1 and c(Mi) = xi for i ≤ k, then
x1 /∈ DR(Mk).

11Note that allowing for multiple saccaded alternatives only change the statement of the condition without
making a change in the identification.
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Theorem 1. A choice function c is deterministic rational visual choice if and only if Condi-
tions 1-3 hold.

A special case occurs if one assumes the individual saccades at most to one point, and the
choice rule becomes:

c(M) = max(max(M,≻ f (M)),≻v) = max(M,≻ f (M))

This special case coincides with triggered choice of Rubinstein and Salant [44], choice by as-
sociation of Demirkan [10], choice by salience of Giarlotta et al. [18] and conspicuity-based
reference point representation of Kibris et al. [39]. This choice rule can be characterized by
using an axiom that only allows a single choice reversal in a menu, and that reversal can only
occur if the fixation point (the most salient point) is dropped from the menu (except the chosen
alternative). Formally, this condition is read as follows: The above stated result with single sac-
cade follows as a corollary. When the DM performs only one saccade, then D̂R(M) = {c(M)}
for any menu M. Thus, the Condition 3 is trivially satisfied when the DM performs only one
saccade, because there can be no xi+1 in DR(Mi) since xi+1 ̸= c(M). Similarly, Condition 2 is
trivially satisfied because the fixation point should be equal to the chosen alternative. Therefore,
one can conclude the following.

Corollary 1. A choice function c is deterministic rational visual choice with single saccade if
and only if Condition 1 holds.

Finally, note that if ⪰ is complete, then the DM always saccades to the set of maximal alterna-
tives in the menu with respect to ⪰. Because c is a choice function, c(M) ∈ max(M,⪰) when
⪰ is complete. If ⪰ is not complete, then the DM does not necessarily choose an alternative
in MAX(M,⪰). A condition that guarantees this is satisfied is when top-down preferences af-
fect the bottom-up salience functions. For this, assume that the order induced by u (strictly)
preserves the order of ⪰, that is, if x ⪰ y, then x ≻u y. This implies that even if k = 1, the first
fixated alternative is an alternative in MAX(M,⪰). Therefore, c(M) ∈ MAX(M,⪰).

4 Fixation Independent Visual Choice

In this section, I will assume that the saccade correspondence is fixation-independent, and show
that in this case one can connect visual choice to some models and their characterization results
in the literature. Furthermore, I assume that s is nonempty. Still, note that if s(M) = /0 for all
M, then the DM does not perform any saccades, then this implies that conditional on fixation at
a certain alternative x, the DM chooses this without comparing it to any other alternative. So,
the choice probabilities become:

ρx(M) =
u(x)
u(M)

for all x ∈ M and any menu M. Thus, all alternatives are chosen with probability equal to their
relative salience values with respect to u. The other extreme case happens when s(x,M) = M
for all M and x ∈ M, which is allowed here. The DM performs saccades to all alternatives
available in the menu, which results in:

ρx(M) =
v(x)
v(M)
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for all x ∈ M and any menu M. This means that all alternatives are chosen with probability
equal to their relative salience values with respect to v, the function that determines saccade
values. So, the extreme cases (the former being excluded) of this induce two different Luce
rules. Luce [32] characterized this using two well-known conditions in the literature: positivity
and Luce’s IIA.

Definition 3. For any rcf ρ:

• ρ satisfies positivity if ρx(M)> 0 for any menu M and x ∈ M.

• ρ satisfies Luce’s IIA if ρx(M)
ρy(M) =

ρx(M′)
ρy(M′) for any M,M′ such that x,y ∈ M∩M′.

Both of these cases satisfy warp. In general, if the saccade correspondence is rational in this
sense, then one can find a complete and transitive binary relation ≿ such that s(M) =max(M,≿
). Under the assumption that s is nonempty-valued, this is equivalent to the preference-oriented
Luce rule (polr) discussed by Dogan and Yildiz [11]. They characterize this rule using a simple
condition called odds modularity, where odds is defined as ox(M) := 1−ρx(M)

ρx(M) .

Definition 4. ρ satisfies odds modularity if ox(M)+ox(M′) = ox(M∪M′) for any menu M,M′.

In general, visual choice reduces to the following choice rule when s is fixation-independent:

ρx(M) =


v(x)

∑y∈s(M) v(y) if x ∈ s(M)

u(x)
u(M) if s(M) = /0

0 o.w.

This choice rule generalizes the general Luce model (glm) defined by Echenique and Saito [13]
and limited consideration Luce model (lcl) by Ahumada and Ulku [1], which are introduced in
order to generalize the Luce rule to deal with zero-probability choices. Since s is nonempty, the
fixation-independent visual choice coincides with these models. Echenique and Saito provides
a characterization of this model using the cyclical independence condition, which is defined
next.

Definition 5. (Cylical Independence) Consider a sequence of alternatives x1, . . . ,xn in X. If
there exists a sequence of menus M1, . . . ,Mn such that ρxi(Mi),ρxi(Mi+1)> 0 for all i∈{1, . . . ,n},
then:

ρx1(Mn)

ρxn(Mn)
=

ρx1(M1)

ρx2(M1)

ρx2(M2)

ρx3(M2)
. . .

ρxn−1(Mn−1)

ρxn(Mn−1)

Using the characterization theorems and these observations, one can directly state the following
result for the fixation-independence case with s being nonempty.

Proposition 1. Consider any rcf ρ .

• ρ satisfies cyclical independence iff ρ is a visual choice such that s is nonempty and
fixation-independent.

• ρ satisfies odds modularity iff ρ is a visual choice such that s is nonempty, fixation-
independent and satisfies warp.
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5 Fixation Dependent Visual Choice

Now, I allow the saccades to be fixation dependent. I already defined the special choice rule I
am going to use for this case, called satisficing visual choice. I assume that the DM only chooses
from alternatives that is better with respect to the fixation point, and potentially chooses all such
alternatives with positive probability because she is not able to find a unique maximum among
them due to cognitive limitations. From a neuroscience perspective, the fixation point leads to a
certain value calculation in the brain, and any alternative that passes this threshold available in
the menu is saccaded after fixating at some alternative. So, this special case proposes a certain
type of saccade correspondence that relies on the notion of satisficing. The brain is able to
compute the value of the alternatives in the scene in a very fast manner, and eliminates using the
saccade correspondence any alternative that does not dominate the fixation point. Alternatively,
this can be interpreted as if the DM saccades to all alternatives in the environment, but only
considers that are at least good as the fixation point. So, in this sense, one can view this choice
rule as a search over all of the set of alternatives because the DM fixates on all alternatives,
while the final choice of the DM depends on how much alternatives are satisficing with respect
to the fixation points. To sum up, the satisficing visual choice model combines different aspects
of bounded rational choice behavior and cognitive limitations. The visual process implies that
individuals fixate on certain alternatives that depend on their relative salience values, and they
perform saccades conditional on the fixation point. One of the most well-established bounded
rationality procedures is satisficing, which is incorporated here by assuming that the individual
saccades to only alternatives that are at least good as the fixation point with a random tie-
breaking among these alternatives. These two parts determine the final choice probabilities.
The next section is devoted to understanding the rationality properties of this procedure, and
then I will provide an empirical characterization.

5.1 Rationality of SVC
I start by discussing the rationality of satisficing visual choice. Although the literature on ra-
tionality of deterministic choice correspondences is quite developed, the evaluation of random
choice functions from this perspective is not substantial as the former. First, one can discuss
whether regularity, a much discussed property satisfied by the random utility model, is satisfied
by svc. I will look at the contextual effects that can be explained by svc, which constitute ex-
amples that violate regularity, so svc allows for this type of violation. Another much discussed
property of rationality for random choice is the notion of stochastic transitivity. I will show that
svc also allows violation of even weak stochastic transitivity. However, under a certain con-
dition on the relation between preferences and visual value functions, svc satisfies moderate
stochastic transitivity12, while it continues to violate strong stochastic transitivity even under
stronger conditions. This is plausible given the evidence that strong stochastic transitivity is
frequently violated in experiments (see Rieskamp [42]). A recent work that deals extensively
with measuring the rationality of random choice functions is Ok and Tserenjigmid [38]. I am
going to use this stochastic rationality measure developed by Ok and Tserenjigmid to show
two results regarding the rationality of svc. Finally, I will conclude by discussing how svc fits
within the deliberate randomization framework.

The results in this section rely on the relation between the preferences of the DM and the

12This is analyzed in detail by Natenzon and He [21] who used it to characterize moderate expected utility
building on the earlier work.
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visual value functions, that is, the relation between ⪰ and (u,v). For this, I need the following
definition.

Definition 6.

• A function u is said to be compatible with ⪰ if x ⪰ (≻)y implies u(x)≥ (>)u(y).

• (u,v) is said to be strongly compatible if both u and v are compatible and x ▷◁ y implies
either u(x)> u(y) & v(x)< v(y) or u(y)> u(x) & v(y)< v(x).

5.1.1 Regularity and Contextual Effects

Satisficing visual choice takes a very simple form when the DM faces binary menus. Consider
an arbitrary menu {x,y} such that x ̸= y. Either these two alternatives are comparable or they
are not. In the former, if say x ≻ y wlog, then DM chooses x conditional on a fixation at x
making no saccades, and again chooses x by doing a saccade from the fixation at y. Thus,
ρx(xy) = 1 if x ≻ y, and ρy(xy) = 0. So, the choice becomes deterministic when one of the
alternatives is strictly better than the other. On the other hand, if x ▷◁ y, then no saccades are
performed from the fixation point, implying that:

ρx(xy) =
u(x)
u(xy)

& ρy(xy) =
u(y)
u(xy)

Thus, in binary choice problems, decisiveness about the choice problem implies deterministic
choices, while indecisiveness implies interior choice probabilities and hence random choice.
Adding a third alternative to the menu enables to capture more relevant behavioral phenomena.
Next, I present two examples to show that svc can capture some important behavioral phenom-
ena in this case. Both examples are related to contextual effects resulting in the violations of
regularity, which says that the choice probability of an alternative decreases as one moves to
larger sets.
Example 3. (Attraction Effect)
Let X = {x,y,z}. Assume that x ≻ z with alternatives being incomparable otherwise. The
attraction effect arises when the choice problems of the DM are {x,y} and {x,y,z}. More
precisely, attraction effect is the observation that the choice probability of x increases relative
to y when a third option which is only dominated by x is added to the menu. In choice problem
{x,y}, ρs(xy) = u(s)

u(xy) for any s ∈ {x,y}. Thus, choice probabilities of the products depend on
the probability that the DM fixates on the alternatives. In particular, if u(x) = u(y), then both
alternatives are chosen with probability 1

2 . The choice probabilities in {x,y,z} are given as
follows:

ρx(xyz) =
u(xz)
u(xyz)

, ρy(xyz) =
u(y)

u(xyz)
, ρz(xyz) = 0

Observe that x’s choice probability increases although the menu is now larger, which shows that
attraction effect can be accomodated. More generally, the attraction effect holds only when
y ≻ x or x ▷◁ y, because otherwise ρx(xy) = 1. In the former situation, it is straightforward
because ρx(xy) = 0 and ρx(xyz) > 0. It is also evident when x ≻ z but y ▷◁ z as in the above
example. On the other hand, whether attraction effect works for x when x and y both dominate
z depends on a further comparison. In particular, the attraction effect works only for one of the
alternatives, and it is true for x meaning that ρx(xyz)> ρx(xy) iff:

v(x)
v(xy)

>
u(x)
u(xy)
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showing that the attraction effect works for the alternative which has a higher relative v value
compared to u. In the feature spaces, this is equivalent to:

∑i αixi

∑i βixi
<

∑i αi(xi + yi)

∑i βi(xi + yi)

Assume that k = 2, i.e. there are two features. Then, the attraction effects works for x when:

ρx(xyz)> ρx(xy) when

{
α1
α2

< β1
β2

if x1
x2
> y1

y2
α1
α2

> β1
β2

if x1
x2
< y1

y2

and both stay the same when x1
x2
= y1

y2
.

Example 4. (Compromise Effect)
Consider the same setting as in the previous example, but now assume that x ≻ y ≻ z. The
compromise effect arises when the choice probability of y increases by the introduction of
product z to the menu {x,y}. Observe that ρx(xy) = 1 and ρy(xy) = 0. On the other hand, in
the larger choice problem {x,y,z}:

ρx(xyz) = 1− u(z)
u(xyz)

· v(y)
v(xy)

, ρy(xyz) =
u(z)

u(xyz)
· v(y)

v(xy)
, ρz(xyz) = 0

Observe that y violates the regularity property after z is added. The increase in the choice
probability is due to the possibility that the DM can first fixate on z, and then saccade to y.
Note that compromise effect holds always, but one can show that the impact of the compromise
effect changes as one adds more options that are dominated by y. To see, let t be a fourth
alternative that is also dominated by z, so x ≻ y ≻ z ≻ t. The change in the choice probability
of y in these two situations are given as follows:

ρy(xyz)−ρy(xy) =
u(z)

u(xyz)
· v(y)

v(xy)

ρy(xyzt)−ρy(xyz) =
(

u(z)
u(xyzt)

− u(z)
u(xyz)

)
v(y)
v(xy)

+
u(t)

u(xyzt)
· v(y)

v(xyz)

First, one can show that the compromise effect in the latter case holds iff:

v(xy)
v(xyz)

≥ u(z)
u(xyz)

Thus, if this condition is violated, then there is no compromise effect for y. Assume that this
condition holds. For simplicity, let u = v. Then, the compromise effect decreases iff:

u(z)
u(t)

≥ u(xy)−u(z)
u(xyzt)

I conclude the discussion of regularity by providing a simple example which shows that reg-
ularity violation is possible even in the simplest case. This further illustrates that regularity
violation is characteristic of satisficing visual choice.
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Example 5. (Uniform SVC)
Assume that ⪰ is complete and u,v values are equal for all alternatives. Recall that the choice
probabilities in the uniform case with satisficing visual choice is given by:

ρ
k(M)(M) =

1
|M| ∑

j<k

1
|M|− j

if k(M)≤ |M|−1, and ρ|M|(M)(M) = ρ |M|−1(M)+ 2
|M| .

Adding an alternative that dominates x never increases the choice probability of x. Hence,
consider adding an alternative that is dominated by x, say y. Assuming that x = k(M) and
y = l(M) for some l < k where k < |M| (so it is not the best alternative in the menu), the change
in choice probability of x is given by:

ρ
k(M)+1(M∪{y})−ρ

k(M)(M) =

[
(

1
|M|+1

− 1
|M|

) ∑
j<k

1
|M|− j

]
+

1
|M|+1

1
|M|

=
1

|M|+1
1
|M|

(
1− ∑

j<k

1
|M|− j

)

Thus, the violation of regularity occurs iff:

1 > ∑
j<k

1
|M|− j

Note that the right-hand side of this expression increases as the alternative becomes better, that
is, as k increases. This implies that violating regularity becomes harder as the alternative’s
ranking becomes higher. In fact, the regularity is never violated by the best alternative in M.
To see, note that the change in probability is slightly different:

ρ
|M|+1(M∪{y})−ρ

|M|(M) =− 1
|M|+1

1
|M|

(
∑
j<k

1
|M|− j

+1

)

which is always negative, and hence regularity cannot be violated.

5.1.2 Stochastic Transitivity

Transitivity is seen as one of the main tenets of rational choice behavior. In the case of stochas-
tic choices, this property is translated as stochastic transitivity. Let ≥ρ be the stochastic pref-
erences defined as x ≥ρ y if ρx(xy)≥ 1/2. Stochastic transitivity comes in different forms. The
following definition provides three versions used in the literature.

Definition 7. Assume that x ≥ρ y ≥ρ z. ρ is:

• weak stochastic transitive (WST) if ρx(xz)≥ 1
2 .

• moderate stochastic transitive (MST) if ρx(xz)≥ min{ρx(xy),ρy(yz)}.

• strong stochastic transitive (SST) if ρx(xz)≥ max{ρx(xy),ρy(yz)}.
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Proposition 2. Satisficing visual choice does not necessarily satisfy weak stochastic transitiv-
ity. However, if u is compatible, then moderate stochastic transitivity satisfied, while strong
stochastic transitivity can be violated even if (u,v) is strongly compatible.

Proof. Assume that x ≥ρ y ≥ρ z. First, let me show that even wst can be violated without
any compatibility assumption. To see, let x ▷◁ y ▷◁ z but z ≻ x. Then, ρx(xz) = 0 < 1

2 ≤
min{ρx(xy),ρy(yz)} since u is strictly positive. Observe that this is ruled out when u is compat-
ible with ⪰: ρx(xy)≥ 1

2 implies that u(x)> u(y), and similarly ρy(yz)≥ 1
2 implies u(y)> u(z),

which results in u(x)> u(z). This contradicts the compatibility since z ≻ x.

Now assume that u is compatible. The goal is to show that ρx(xz)≥ min{ρx(xy),ρy(yz)}. Note
that x ≥ρ y implies that either x ≻ y or x ▷◁ y. Similarly, y ≥ρ z implies either y ≻ z or y ▷◁ z. If
x ≻ z, then the conclusion follows directly in any case, because ρx(xz) = 1. So, I will assume
that x ▷◁ z.

First, assume that x ≻ y, which implies by compatibility u(x)> u(y). If y ≻ z, then transitivity
implies x≻ z, which is excluded above. So, let y ▷◁ z. Because y≥ρ z, it follows that u(y)≥ u(z),
and hence u(x)> u(z). Since x ▷◁ z and u(x)> u(y):

ρx(xz) =
u(x)
u(xz)

>
u(y)
u(yz)

= ρy(yz)

This concludes the proof for x ≻ y.

Now assume that x ▷◁ y. If y ≻ z, then ρy(yz) = 1 and also u(y) > u(z) by compatibility.
Moreover, the incomparability of x and y and the assumption that x ≥ρ y implies that u(x) ≥
u(y) since ρx(xy)≥ 1

2 , and hence u(x)> u(z). Since x ▷◁ z and u(y)> u(z):

ρx(xz) =
u(x)
u(xz)

>
u(x)
u(xy)

= ρx(xy)

Finally, consider the case when y ▷◁ z. The assumption that ρx(xy)≥ 1
2 and ρy(yz)≥ 1

2 implies
that u(x)≥ u(y)≥ u(z). So, ρx(xz) is in fact greater than both ρx(xy) and ρy(yz), implying the
conclusion.

I conclude the proof by showing that SST is not satisfied even when (u,v) is strongly compati-
ble. To wit, assume x≻ y ▷◁ z and x ▷◁ z. Then, max{ρx(xy),ρy(yz)}= 1, and ρx(xz) = u(x)

u(xz) < 1,
which shows that SST is violated.

5.1.3 Stochastic Rationality Measure

Towards developing the stochastic rationality measure developed by Ok and Tserenjigmid, I
need to provide some definitions first. Consider any random choice function ρ . The λ -choice
correspondence induced by ρ is a mapping Cρ,λ : X → X such that:

Cρ,λ (M) :=

{
{x ∈ M : ρ∗

x (M)≥ λ} if λ ∈ (0,1]
{x ∈ M : ρx(M)> 0} if λ = 0

where ρ∗ is defined as:

ρ
∗
x (M) :=

ρx(M)

maxy∈M ρy(M)
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The collection {Cρ,λ : λ ∈ [0,1]} is referred as Fishburn family associated with ρ . ρ is said
to be λ -rational if Cρ,λ is rational. Thus, showing λ -rationality is violated is equivalent to the
violation of the characterizing features for the deterministic rationality. These are stated as
follows for any deterministic choice function C:

• (Chernoff ): ∀S,T ∈ X such that S ⊆ T : C(T )∩S ⊆C(S).

• (Condorcet): ∀S ∈ X and x ∈ S: x ∈C(xy) ∀y ∈ S implies that x ∈C(S).

• (No Cycle): ∀x,y,z ∈ X : x =C(xy) and y =C(yz) implies x =C(xz).

OT shows that a λ -rational random choice function can be characterized by the λ -stochastic
analogues of the conditions which characterize a rational deterministic choice correspondence.
These are stated as follows:

• (λ -Chernoff ): ∀S,T ∈ X such that S ⊆ T : ρ∗
x (T )≥ λ implies ρ∗

x (S)≥ λ .

• (λ -Condorcet): ∀S ∈ X and x ∈ S: ρ∗
x (xy)≥ λ ∀y ∈ S implies that ρ∗

x (S)≥ λ .

• (λ -No Cycle): ∀x,y,z ∈ X : λρx(xy) > ρy(xy) and λρy(yz) > ρz(yz) implies λρx(xz) >
ρz(xz).

Consider two arbitrary random choice functions ρ, ρ̃ . The comparative rationality ordering, a
partial order denoted as ⊵r, is defined as follows: ρ ⊵r ρ̃ iff ρ is λ -rational for all λ ∈ [0,1]
whenever ρ̃ is λ -rational. A rcf ρ is maximally rational if ρ ⊵r ρ̃ for any rcf ρ̃ , and similarly
minimally rational if ρ̃ ⊵r ρ for any rcf ρ̃ .

The svc rule has the primitives (⪰,u,v). The following proposition shows that if one knows
that ⪰ is complete, then any svc can be compared (by varying u or v) with respect to the ratio-
nality ordering defined here. Furthermore, no svc with complete ⪰ is maximally or minimally
rational.

Theorem 2. If ⪰ is complete and (u,v) is compatible, then:

• Any svc is ⊵r-comparable.

• No svc is maximally or minimally rational.

Next, I am going to characterize the cases svc is maximally rational. Say a rcf ρ is an almost
Luce rule (alr) if there is unique alternative x∗ such that:

ρ
alr
y (M) :=


1 x∗ ∈ M & y = x∗

0 x∗ ∈ M & y ̸= x∗
u(y)
u(M) x∗ /∈ M

So, alr differs from the Luce rule only when the menu contains x, becoming deterministic when
this is the case. The following result shows that svc is maximally rational iff it is either Luce
or an almost Luce.

Theorem 3. If (u,v) is strongly compatible, then svc is maximally rational iff one of the fol-
lowing holds:

• All alternatives are incomparable (Luce rule).
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• There is unique x∗ such that x∗ ≻ y for all y ̸= x and otherwise all alternatives are incom-
parable (almost Luce rule).

The rationality of svc is not monotonic with respect to the completeness of the preferences.
Above, I showed that when ⪰ is complete, svc is not maximally rational, while it is maximally
rational in the case of fully incomparability or when the DM has a favourite alternative which
dominates the rest without any other comparable pair. These show that increasing the level of
decisiveness is not necessarily better for the DM from the viewpoint of rationality.

Remark 1. Ok and Tserenjigmid shows that if the menus are restricted to be binary, as it
is usually the case in experimental applications, then moderate stochastic transitivity implies
maximal rationality. This implies that svc is maximal rational because svc satisfies this by
Proposition 2 when u is compatible.

Remark 2. If one allows ⪰ to include ties among distinct alternatives, then also the case of
⪰= X ×X is maximally rational. When this is the case, the choice probabilities are as follows:

ρy(M) = ∑
x∈M

v(y)
u(M)

· u(x)
v(M)

=
v(y)

u(M)v(M)
· ∑

x∈M
u(x)

=
v(y)
v(M)

If furthermore v is compatible, then ρy(M) = 1
|M| .

In fact, if ⪰ consists of either incomparabilities or indifferences, then this holds true. Let
I(x,M) denote the set of indifferent alternatives to x in menu M. Assume that the conditional
choice probability due to saccades are modified as:

ps
(M,x)(y) =


v(x)

v(D(y,M)) if x ∈ D(y,M)
v(x)

v(I(y,M)) if D(y,M) = /0 & x ∈ I(y,M)

0 o.w.

Since preferences consists of either incomparabilities or indifferences, one can show that svc
is a Luce rule with u, using the compatibility of v. The choice probability of x in M is given as
follows:

ρx(M) =

{u(I(x,M))
u(M) · v(x)

v(I(x,M)) if I(x,M) ̸= /0
u(x)
u(M) o.w.

The compatibility of both u and v with ⪰ implies that u(x) = u(y) and v(x) = v(y) for any
y ∈ I(x,M). Thus, v(x)

v(I(x,M)) =
1

|I(x,M)| and u(I(x,M)) = |I(x,M)|u(x), which implies that the

above choice probabilities reduces to ρx(M) = u(x)
u(M) . This shows that svc is also maximally

rational in this case.
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5.1.4 Deliberate Randomization

In the previous section, I discussed the rationality properties of satisficing visual choice using
stochastic transitivity and the rationality index developed by Ok and Tserenjigmid. A related
inquiry is to evaluate svc from the viewpoint of deliberate randomization. This approach views
the random choices of the DM as the result of optimizing expected utility. Let ∆(M) be the
set of probability distributions on M. Fudenberg et al. [17] provides a model of random choice
which solves a maximization problem with perturbed expected utility. This distribution is found
by solving the following maximization problem, and a rcf ρ is a member of this whenever:

ρ(M) ∈ argmax
ρ∈∆(M)

∑
x∈M

u∗(x)ρx(M)− kM,x(ρx(M))

where u∗ is the utility function of the DM, and k is a convex perturbation function. When
ρ(M) can be found using this maximization problem, it is said to have an additive perturbed
utility (apu) representation. This version where the cost function depends on both the alter-
native x and menu M is empirically vacuous. On the other hand, the versions where k is
menu-independent (kA,x(·) = kx(·)), called menu-independent apu, and in addition alternative
independent (kA,x(·) = k(·)), called invariant apu, satisfy regularity, and therefore does not
nest svc. Therefore, svc cannot be represented using these type of cost functions. However,
assume that the cost function is alternative-independent but depends on the menu, called item-
independent apu, so kA,x(·) = kA(·). The next result shows that svc can be represented using an
item-independent apu under certain conditions.

Proposition 3. If ⪰ is complete and v is compatible, then svc can be represented by an
alternative-independent apu.

Proof. The alternative-independent apu is characterized using a condition called item-acyclicity.
Let x ≿i y if ρx(M) ≥ ρy(M) for some menu M ⊇ {x,y} and x ∼i y if both x ≿i y and y ≿i x.
Item-acyclicity says that ≿i should be acyclic. First, I will show that the compatibility of v im-
plies monotonicity, which implies when ⪰ is complete that ρx(M)≥ ρy(M) iff ρx(M′)≥ ρy(M′)
for any M ∩M′ ∋ x,y. To see that monotonicity is satisfied, consider x,y ∈ X that are compa-
rable, and assume wlog that x ≻ y. For any z ∈ M such that y ≻ z, it is the case that x ≻ z by
transitivity. Furthermore, compatibility assumption implies that v(x) > v(y). This shows that
the contribution to x from the items it dominates is at least the contribution y gets similarly,
which concludes the proof.

Another paper that lays out a model of deliberate randomization is= Cerreia-Vioglio et al. [8].
Assume that X = [0,1] and ∆ is the set of lotteries on X .13 Define ρ∗(M) := ∑x∈M ρx(M) · x,
and let ≫ denote the first-order stochastic dominance relation. Next, I provide the definition
for deliberate random choice:

Definition 8. A rcf ρ is called a deliberate random choice (drc) if there is a complete preorder
≿ on ∆ such that:

• For all M ∈ ∆: ρ∗(M)≿ p for any p ∈ co(M).

• If p ≫ q, then p ≻ q.
13The only change is that instead of an arbitrary interval in R as in their model, I assume X is the unit interval

from 0 to 1. Also, they assume the topology of weak convergence on ∆.
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Deliberate random choice does not necessarily satisfy regularity. Still, one can show that svc
is not the result of deliberate randomization according to this definition. It is shown that drc is
characterized by the following condition called rational hedging:

Definition 9. Consider a collection of menus M1, . . . ,Mk such that k ≥ 2. If ρ∗(Mk)∈ co(Mk−1)
for any k, then q ∈ co(Mk) implies that ¬(q ≫ ρ∗(M1)).

To see that svc is not drc, consider the set of degenerate lotteries which gives a prize x ∈ [0,1]
with certainty. In particular, let {x,z}=M2 ⊂M1 = {x,y,z} with x< y< z, and ⪰=≥. Note that
co(M1) = co(M2) = [x,z] and svc procedure implies that ρz(M2) = 1 while ρy(M1),ρz(M1) >
0. Thus, ρ∗(M2) = z and ρ∗(M1) < z. This contradicts the rational hedging condition since
ρ∗(M2) ∈ co(M1) = [x,z] and z ∈ co(M2) should imply ¬(z ≫ ρ∗(M1)), but actually for any
q ∈ (ρ∗(M1),z] one has q ≫ ρ∗(M1).

5.2 Characterization of SVC
In this section, first I am going to talk about the identification of the primitives for svc, which
is <⪰,u,v >. Then, I will impose conditions on the choice data which provides an empirical
characterization for satisficing visual choice. First, I start by identifying the preferences of the
DM. For the identification of preferences, binary menus are sufficient.

Definition 10. x is revealed to dominate y if ρx(xy) = 1 and revealed to be incomparable if
ρx(xy) ∈ (0,1).

Furthermore, observe that even though the possibility of multiple representations is open, pref-
erences are uniquely identified in any case. It cannot be the case that x is revealed to dominate
y under some representation, while the opposite is true under another representation, because
these imply ρx(xy) = 1 for the first representation, and ρy(xy) = 1 for the latter, impossible to
observe in the choice data. Let me simply denote the revealed preferences as ⪰ with ▷◁ denot-
ing the incomparable part (slightly abusing the notation by using the same notation as with the
primitives), and define D(y,M) = {x ∈ M : x ≻ y}.

The identification is more subtle for the fixation and saccade. Let gxy denote relative fixation
value of x compared to y. Note that this information cannot be identified always. For instance,
assume that ρx(M) = 1 for some menu M such that x ∈ M. Under svc, this is possible iff x
dominates the rest of the alternatives in M. In this case, one cannot identify the relative fixation
value of x compared to the other alternatives in M. If this holds for all menus, then this rules
out the possibility of identifying the relative fixation value of x compared to another alternative
(which can be revealed possibly using other menus). However, if ρx(xy) ∈ (0,1), then the
relative fixation value of x to y can be derived by defining gxy =

ρx(xy)
ρy(xy) .

Now consider any trinary menu {x,y,z}. There are several cases that should be considered.
If ρs(M) > 0 for all s ∈ M, then this implies that all alternatives are incomparable to each
other, because if there was a comparable pair then the alternative that is worst according to
comparison is chosen with zero probability. Therefore, one can define gst =

ρs(xyz)
ρt(xyz) for any

s, t ∈ {x,y,z}. Another case is when one of the alternatives is chosen with probability 1. I
already noted that if either ρx(xyz) or ρy(xyz) is equal to 1, then the relative fixation values
cannot be identified. However, if ρz(xyz) = 1, this implies that z dominates the rest of the
alternatives, while x and y are revealed to be incomparable to each other, so ρx(xy) ∈ (0,1)
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and same reasoning for binary menu applies. If ρx(xyz),ρz(xyz)> 0 and ρy(xyz) = 0, then y is
dominated either by x or z. This has several subcases. If for example all binary probabilities
are deterministic, then this means that ⪰ is complete when restricted to {x,y,z}, and fixation
values cannot be identified. However, if ρy(yz) ∈ (0,1) or ρx(xz) ∈ (0,1), then one can define
gxy = gxz ·gzy where gxz =

ρx(xz)
ρz(xz) and gzy =

ρz(yz)
ρy(yz) . In general, one can find the relative fixation

value of two alternatives using an incomparability path: an incomparability path can be defined
as a sequence of alternatives {xi}n

i=1 such that xi ▷◁ xi+1 for all i ≤ n−1. Assume that {xi}n
i=1 is

an incomparability path that connects x and y, that is, x1 ≡ x and xn ≡ y. Define gxy as follows:

gxy := Πi∈{1,...,n−1}
ρxi(xixi+1)

ρxi+1(xixi+1)

where ρxi(xixi+1) ∈ (0,1) for all i ∈ {1, . . . ,n−1}. In the next section, I show that there exists
a well-defined u such that gx(M) can be defined as u(x)

u(M) using the cyclical independence con-
dition stated in the upcoming part. Thus, one can define u and hence gx(M) using the choice
probabilities, which I will use next in defining the saccade value and probabilities.

To identify the saccade probabilities, I will rely on the choice data and the fixation probabilities
identified above. Let φx(y,M) denote the revealed saccade probability from y to x in menu M.
One cannot always identify the saccade probabilities. Consider a binary menu M = {x,y}. If
ρx(xy) = 1, then x ≻ y, so φx(x,M) = φx(y,M) = 1 and φy(x,M) = φy(y,M) = 0. If ρx(xy) ∈
(0,1), then they are incomparable, so φx(x,M) = 1 = φy(y,M) and φx(y,M) = 0 = φy(x,M). If
one considers a trinary menu M = {x,y,z}, then this is more complicated. Two cases where
it is easier are when one of the alternatives is chosen with probability 1 and the case when
all alternatives chosen with positive probability. In the former case, if say ρx(M) = 1, then
φx(y,M)= 1 for any y∈M, while φs(t,M)= 0 for any s ̸= x and t ∈M. In the latter, φs(t,M)= 1
iff s = t, and otherwise it is equal to 0.

In general, one can consider two cases. A menu M can either satisfy positivity or not, and in
the latter case there always exists at least one alternative with zero choice probability. In the
former case, it is easy to define saccade probabilities, since every alternative is revealed to be
incomparable to each other. Let φx(y,M) = 1 iff x = y when this is the case, and it is equal to
0 otherwise. This is also true when x is the unique alternative that dominates y in M, without
the need for the positivity, or when x is incomparable to the rest of the alternatives. Similarly,
φx(y,M) = 0 whenever y ≻ x for any menu that includes both. So:

φx(y,M) =

{
1 if x ⪰ y & D(y,M)⊆ {x}
0 if y ≻ x or y ▷◁ x

Observe that the only excluded case is when there are multiple alternatives that dominate y, i.e.
when |D(y,M)|> 1. Assume that positivity is not satisfied, and let ρz(M) = 0. Define the odds
ratio of g as og(x,M) := 1−gx(M)

gx(M) and the following function:

hx(z,M) := (1+og(z,M))ρx(M)−og(z,M)ρx(M \{z})

Note that the final case covers the situations when either z ≻ x or z ▷◁ x. The value function v
can be constructed using the relative saccade probabilities. In particular, one can do this for
alternatives x,y if there is z is such that x,y ≻ z and ρz(M) = 0 in some menu M ⊇ {x,y,z}.
Then, one can define the relative saccade probability φxy of x to y as:

φxy :=
ht1(z1,M1)

ht2(z1,M1)
· ht2(z2,M2)

ht3(z2,M2)
· . . .

htk−1(zk−1,Mk−1)

htk(zk−1,Mk−1)
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From this, it is possible to derive the saccade value v and define the saccade probabilities
as in the case of fixation probabilities. Since D is also revealed, one can define the saccade
probabilities as:

φx(z,M) =

{ v(x)
v(D̂(z,M))

if x ∈ D̂(z,M)

0 o.w.

In the appendix, I show that this formula is equivalent to the following if furthermore ρz(M) =
0:

φx(z,M) =


1 if x ⪰ z & D(z,M)⊆ {x}
hx(z,M) if {x} ⊂ D(z,M)

0 o.w.

The previous part provided an analysis about the identification of underlying parameters of
satisficing visual choice. Now, I will provide the conditions used to empirically characterize
a choice data generated by the proposed choice rule. These conditions can be grouped into
three categories. The first category consists of three conditions which are mainly related to
the underlying preferences of the DM. The final condition of this group is a weakening of
Luce’s IIA. The second category consists of three conditions which are related to the revealed
fixation probabilities, while the last category is a single condition related to the revealed saccade
probabilities.

The first condition I am going to use to characterize svc is dominance transitivity. This condi-
tion is a relaxation of previously discussed moderate stochastic transitivity, which requires also
the compatibility of u.

Condition 4. Dominance Transitivity
ρx(xy),ρy(yz) = 1 implies ρx(xz) = 1 for all x,y,z ∈ X.

It is straightforward to see the necessity of this condition: If ρ is represented by svc and
ρx(xy) = 1, then x strictly dominates y, and similary ρy(yz) = 1 implies y strictly dominates
z. By transitivity, x strictly dominates z, which implies that ρx(xz) = 1.

Consider any alternative x which is chosen with positive probability in menu M. The following
condition states that x cannot be dominated without dominating another alternative, unless it is
incomparable to the rest of the alternatives.

Condition 5. Rationalizability
ρx(M)> 0 iff maxy∈M ρx(xy) = 1 or miny∈Mρx(xy)> 0.

To see why this is necessary, first consider the if part. This says that if either maxy∈M ρx(xy) = 1
or miny∈Mρx(xy) > 0, then x is chosen from M with strictly positive probability. Assume that
the former holds, which implies that x ≻ y for some y ∈ M, and therefore ρx(M) > 0 because
it has svc representation. If the latter is true, then even in the case maxy∈M ρx(xy) < 1, it is
revealed that x is incomparable to the rest of the alternatives and it is chosen only when the DM
fixates on it. Because ρ is svc and visual value functions are strictly positive, the conclusion
again follows. Now consider the only if part, and take the contrapositive: if maxy∈M ρx(xy)< 1
and miny∈Mρx(xy) = 0, then ρx(M) = 0. The if part holds iff x does not dominate any other
alternative, but it is dominated itself, which implies by ρ being svc that it should be chosen
with zero probability.
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Now consider a menu M and let s ∈ M be an alternative which is revealed to be incomparable
to M \{s}, which holds iff ρs(xs) ∈ (0,1) for all x ∈ M \{s}. Consider the relative probability
ratio of x compared to y in menu M where x,y are distinct from s, ρx(M)

ρy(M) . The removal of s does
not affect the domination sets for the alternatives, and it only changes the denominator of the
fixation probability for the alternatives dominated by the corresponding alternative. Since s is
incomparable to any alternative in M \{s}, the relative probability ratio remains the same. This
is stated in the next axiom:

Condition 6. Independence from Incomparable Alternatives
Consider a menu M and let ρs(st) ∈ (0,1) for all t ∈ M \ {s}. Then, the following equality
holds:

ρx(M)

ρy(M)
=

ρx(M \{s})
ρy(M \{s})

for any x,y ∈ M \{s} provided that the ratios are well-defined.

For the following condition, consider an incomparability path that connects y and z. Given that
y and z are incomparable, one has ρy(yz)

ρz(yz) =
u(y)
u(z) in svc. Let {xi}k

i=1 be an incomparability path

that connects y and z. Then,
ρxi(xixi+1)

ρxi+1(xixi+1)
= u(xi)

u(xi+1)
, which implies the following result.

Condition 7. Cyclical Independence
Consider a sequence of alternatives x1,x2, . . . ,xk such that ρxi(xixi+1) ∈ (0,1) for all i ≤ k
where xk+1 ≡ x1. Then:

ρx1(x1xk)

ρxk(x1xk)
=

ρx1(x1x2)

ρx2(x1x2)
· ρx2(x2x3)

ρx3(x2x3)
· · ·

ρxk−1(xk−1xk)

ρxk(xk−1xk)

These last two conditions are relaxations of Luce’s IIA, even though the former is not directly
defined on the observed choice probabilities.14 This condition guarantees that fixation value
u and hence fixation probabilities can be properly defined, which is stated in the Appendix.
Equipped with the specific u, one can define the fixation probability of x in M as gx(M) := u(x)

u(M) .
Note that depending on u, g values change, so g should also depend on u in the notation, which
I suppress here. The following condition relies on this construction from the relative fixation
probabilities, which states the relative probability increase in fixating at x when one adds z to
some menu is equal to the probability that the DM does not fixate at z in the final menu.

Condition 8. Fixation Ratio Consistency
For any menu M and z ∈ M:

1−gz(M) =
gx(M)

gx(M \{z})

To see its necessity, note that 1−gz(M) = u(M\{z})
u(M) , and gx(M)

gx(M\{z}) =
u(M\{z})

u(M) , which implies the
conclusion.

The final set of conditions guarantee that saccade probabilities are properly defined. The first
one is as follows:

14In their working paper version, ES uses very similar conditions to Conditions 6-7, which are relaxations of
Luce’s IIA, while the remaining two conditions are violated by svc. Also, in the proof, they use the dominance
transitivity condition, which is implied by two conditions that characterize their model, which are not satisfied by
svc.
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Condition 9. Bounded Fixation Ratio
For any menu M and z ∈ M such that ρz(M) = 0, the following holds:

gx(M)

gx(M \{z})
≤ min{ ρx(M)

ρx(M \{z})
,

1−ρx(M)

1−ρx(M \{z})
}

If furthermore ρx(xz) ∈ (0,1), then the second inequality becomes:

gx(M)

gx(M \{z})
=

ρx(M)

ρx(M \{z})

The necessity of this condition is not straightforward, and therefore it is established in the
Appendix. For the final condition, I need the following definition:

Definition 11. {ti}k
i=1 is said to be a h-path connecting x and y if t1 ≡ x and tk ≡ y such that for

any ti, ti+1 there is an associated menu Mi where ti, ti+1 ≻ zi for some zi ∈ Mi with ρzi(Mi) = 0.
Given this, define:

h({ti}k
i=1) := Πi≤k−1

hti(zi,Mi)

hti+1(zi,Mi)

Similarly to the case of fixation probabilities, h({ti}k
i=1) =

v(t1)
v(t2)

· · · · · v(tk−1)
v(tk)

= v(t1)
v(tk)

, and the last

term is equal to v(x)
v(y) by definition. The same ratio is reached if one considers another such path

that connects x and y. This results in the following condition.

Condition 10. Cyclically Independent Saccade
For any two h-paths {ti}k

i=1 and {t ′i}k′
i=1 connecting x and y:

h({ti}k
i=1) = h({t ′i}k′

i=1)

The following result provides the characterization of svc.

Theorem 4. A rcf ρ can be represented by svc iff ρ satisfies Conditions 4-10.

Even though preferences are uniquely identified, it can be the case that relative fixation proba-
bilities are not unique. To guarantee the uniqueness of these, a certain richness condition can
be imposed on X . Next, I state this condition.

Definition 12. X is said to be dense if for all x,y ∈ X such that ρx(xy) ∈ {0,1} there is an
incomparability path {zi}k

i=1 such that z1 ≡ x and zk ≡ y with Π
k−1
i=1 ρzi(zizi+1)· ∈ (0,1).

The density assumption guarantees that there is an incomparability path for any two alternatives
that are comparable, and hence the relative fixation probabilities are uniquely identified for any
two alternatives. Note that this is true for relative fixation probabilities, and not for the fixation
probabilities themselves. So, two different value functions u and u′ can represent the same svc
if the ratios remain the same for any two alternatives. The denseness condition is satisfied by
the feature spaces. Assume that X is the feature space, that is, X ⊆ Rk for k ≥ 1. For example,
consider k = 2. The preferences ⪰ on X can be defined as a vector ordering over these two
dimensions. Observe that when this is the case, two alternatives x and y are comparable iff
either x or y dominates the other alternative in both dimensions. This implies that for any
x ∈ X , there is y ̸= x in X such that x ▷◁ y provided that alternatives cannot beat each other in
all dimensions. The denseness condition is satisfied for all feature spaces whenever k > 1 and
X is not finite. On the other hand, when k = 1, ⪰ defined above is always complete, and hence
the condition is violated. A similar condition can be stated for the saccade probabilities with
the same logic:
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Definition 13. X is said to be dense∗ if for all x,y ∈ X there is a menu M such that x,y ≻ z and
ρz(M) = 0 for some z ∈ M.

This is also plausible in the setting of feature spaces. For this, consider two distinct alternatives
x and y. If x and y are incomparable to each other, then one can define a third alternative
z = (min{x1,y1}, . . . ,min{xk,yk}) which is also in the feature space. If they are comparable
and say x dominates y, then one can directly consider z = (yi − ε,y−i) where ε > 0. In menu
M = {x,y,z}, x,y ≻ z and ρz(M) = 0.15

Proposition 4. If X is dense (dense∗), then two satisficing visual choice models (u,v,⪰) and
(u′,v′,⪰′) represent the same rcv iff there is λ > 0 such that u = λu′ (v = λv′) and ⪰=⪰′.

5.3 Comparative Statics
In this section, I ask the question of how changes in primitive values affect the properties of the
model. Assume that ⪰ is fixed. This leaves two parameters that can change: u and v. Take an
alternative x and a menu M that includes x. I will first consider how changes in fixation value
affects choice probabilities. Assume an increase in u(x). The change of ρx(M) with respect to
u(x) is given by:

∂ρx(M)

∂u(x)
=

{
1

u(M) −
Ax

u(M)2 if D(x,M) = /0

− Ax
u(M)2 if D(x,M) ̸= /0

where Ax :=∑x≻y u(y) · v(x)
v(D(y,M)) . One can show that 1− Ax

u(M) > 0, which implies that ∂ρx(M)
∂u(x) > 0

when D(x,M) = /0. So, increasing u(x) leads to an increase in the choice probability of ρx(M)
when there is no alternative that strictly dominates x, while it leads to a decrease otherwise.

What if the fixation value of a distinct alternative y, u(y), increases? Consider any menu M that
includes both x and y. If y ≻ x or y ▷◁ x, the only effect is through increasing the denominator
of the fixation probability, while this is not the case if x ≻ y. In particular:

∂ρx(M)

∂u(y)
=

{
1

u(M)
v(x)

v(D(y,M)) −
Ax

u(M)2 if x ≻ y

− Ax
u(M)2 o.w.

The effect of a increase in u(y) results in the same conclusion when y ≻ x or y ▷◁ x, leading to a
decrease in ρx(M). The situation when x ≻ y depends on the comparison between v(x)

v(D(y,M)) and
Ax

u(M) . Through some algebra, one can show that increasing u(y) increases ρx(M) iff:

v(x)
v(D(y,M))

≥ Ax

u(M)
≡ ∑

x≻y

u(y)
u(M)

· v(x)
v(D(y,M))

This shows that the increase in choice probability depends on the comparison of two effects:
on the left-hand side, choice probability of x might increase due to saccades, while on the right
hand side it can decrease due to the decrease in fixation probabilities.

15If one assumes that X is finite, then it might admit a maximum or minimum alternative for which there is no
incomparable alternative. Still, finite feature spaces can be dense under suitable conditions. For example, assume
that each property is binary and xi = 1 iff x has the ith property. Let 1 = (1,1, . . . ,1) and 0 = (0,0, . . . ,0). Then,
X = {0,1}k \ {0,1} is dense. For any x,y ∈ X , one can find z incomparable to both by only changing a property
that is not present in both alternatives. If there is no such property, then do this by changing two distinct properties
which are not present in x and y. The second denseness condition is harder to satisfy without assuming further
structure.
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Now, I will look at how the saccade values affect the choice probabilities. First, consider an
increase in v(x). This has a positive impact by increasing the contribution coming from the
saccade probability’s numerator, while it leads to a decrease if the denominator is affected
more. In particular:

∂ρx(M)

∂v(x)
=

{
∑x⪰y

u(y)
u(M)

v(D(y,M))−v(x)
v(D(y,M))2 if there is y s.t. x ≻ y

0 o.w.

Since v(D(y,M)) ≥ v(x), the derivative is always positive, and therefore ρx(M) increases as
v(x) increases. On the other hand, an increase in v(y) leads to a decrease in ρx(M) if there is
z ∈ M such that x,y ∈ D(z,M). If there is no such z, then an increase in v(y) does not affect
ρx(M). These observations can be summed up as follows:

• An increase in the fixation value for an alternative x leads to a decrease in ρx(M) un-
less D(x,M) = /0, while it leads to a decrease in ρy(M) unless y ≻ x and u(M)

v(D(y,M)) ≥

∑x⪰z
u(z)

v(D(z,M)) .

• An increase in the saccade value for an alternative x increases ρx(M) only when x ∈
D̂(y,M) for some y ∈ M, and has no effect otherwise. Provided that x,y ∈ D̂(z,M) for
some distinct z, ρy(M) decreases, and otherwise it has no impact on ρy(M).

Say (u,v) is coherent if an increase in u(x) occurs iff there is an increase in v(x) for any
x ∈ X , which is trivially the case if u = v. If u(x) increases and (u,v) is coherent, then a
decrease in ρx(M) occurs only when D(x,M) ̸= /0 and the decrease due to the increase in u(x)
(fixation effect) dominates the increase due to the increase in v(x) (saccade effect). For a
distinct alternative y, there are several cases to consider. First, assume that x and y do not
share an alternative that both dominate. This can occur only if x ≻ y or x ▷◁ y, since otherwise
when y ≻ x, they need to share at least one alternative provided x ≻ z for some z ∈ M \{x,y}.
In both cases, ρy(M) decreases only due to the fixation effect. On the other hand, if they
share an alternative both dominate, then y ≻ x (in addition to x ≻ y or x ▷◁ y) is possible. If
it is not the case that y ≻ x, then ρy(M) decreases from both fixation and saccade effects. If
y ≻ x and the condition u(M)

v(D(y,M)) ≥ ∑x⪰z
u(z)

v(D(z,M)) is not satisfied, then the same conclusion is
arrived. The only case when ρy(M) increases is when this condition holds and the fixation
effect dominates the saccade effect. Hence, the coherency case presents an interesting situation
where the salience value of x increases for both u and v, but this leads to an increase in the
choice probability of y. Let ũ(x) and ṽ(x) denote the transformed values for x. The following
proposition provides a sufficient condition for this situation to happen:

Proposition 5. Assume that (u,v) is coherent and the saliency of x improves in both. If ρy(xy)=
1 and ∑x≻z

v(D(y,M))
v(D(z,M)) ≤ 1, then ρy(M) increases. If furthermore u(M \ {x}) < v(x)ũ(x)−ṽ(x)u(x)

ṽ(x)−v(x) ,
then ρx(M) decreases.

Proof. The proof of the first claim is provided in the above discussion. For the latter, note
that ρx(M) strictly decreases after the transformation iff 1

u(M)Ax >
1

u(M\{x})+ũ(x) Ãx where the

latter denotes the ∑x≻z u(z) · v(x)
v(D(z,M)) with transformed values for x. This is equivalent to the

following claim:

v(x)
u(M) ∑

x≻z

u(z)
v(D(z,M))

>
ṽ(x)

u(M \{x})+ ũ(x) ∑
x≻z

u(z)
v(D(z,M)\{x})+ ṽ(x)
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Because ∑x≻z
u(z)

v(D(z,M)) > ∑x≻z
u(z)

v(D(z,M)\{x})+ṽ(x) , the right hand side is strictly less than

ṽ(x)
u(M \{x})+ ũ(x) ∑

x≻z

u(z)
v(D(z,M))

which implies coupled with the assumption u(M \ {x}) < v(x)ũ(x)−ṽ(x)u(x)
ṽ(x)−v(x) the desired conclu-

sion.

Another widely looked comparative static is the change in the probability of choosing the best
product and its relative ratio compared to the second best product. Assume in this section that
⪰ is complete and fix the menu to be the grand set X . Assume that X = {x1,x2, . . . ,xn} and
xi ≻ xi+1 for all i ≤ n−1. Let ρi(X) denote the probability of choosing the ith best product. I
am specifically interested in understanding how does ρ1(X) and also ρ1(X)

ρ2(X) change with respect
to the changes in X . In particular, a widely asked question regarding the contextual effects is
about the impact of adding a third alternative into a choice set consisting of two alternatives.
First, note that:

ρ1(X) =
u({x1,x2})

u(X)
+∑

i>2

u(xi)

u(X)
· v(x1)

v({x1, . . . ,xi−1})

and

ρ2(X) = ∑
i>2

u(xi)

u(X)
· v(x2)

v({x1, . . . ,xi−1})

This implies that:
ρ1(X)

ρ2(X)
=

v(x1)

v(x2)
+

u({x1,x2})
v(x2)

· 1

∑i>2
u(xi)

v({x1,...,xi−1})

which simplifies to:
ρ1(X)

ρ2(X)
=

v(x1)

v(x2)
+

u({x1,x2})v({x1,x2})
v(x2)u(x3)

when X contains first three alternatives. Note that because ρ1(X) = 1 when X contains only two
alternatives, so this ratio is equivalent to plus infinity. Thus, the addition of the third alternative
necessarily decreases this ratio. Furthermore, an increase in the value of the third alternative
also decreases this ratio, meaning that adding a better third alternative implies a relative gain
for the second-best alternative.

5.4 Connections to the Literature
In this section, I discuss the most closely related models in the literature. Further discussion
of other models and their relation to visual choice is postponed to the Appendix. The observa-
tion that svc satisfies MST has two immediate implications regarding the relation of svc to the
literature. First, one can conclude that svc is not subsumed by the scalability models, charac-
terized by a stronger condition compared to SST as shown in Tversky and Russo [49]. Second,
it shows that svc and rum are not nested by each other, but they intersect nontrivially. This fol-
lows because svc might violate regularity, which is satisfied by rum, while rum might violate
WST using Condorcet cycles. Luce rule lies in the intersection of both models as will be clear
later on. Therefore, the following is concluded.

Many models in the literature including Luce rule, random consideration set rule of Manzini
and Mariotti [33] (MM), and the attribute rule by Gul, Natenzon and Pesendorfer [20] (GNP)
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are special cases of rum. Therefore, this conclusion also implies that svc is not nested by any
of these models.16

The situation regarding visual and rational visual choice is different. To explain this, consider
the random attention model (ram) developed by Cattaneo et al. [6], which further generalizes
rum. In ram, the DM is endowed with a strict preference relation ≻ and a random attention
mapping Γ : X×X → [0,1] such that for all M ∈ X one has Γ(S|M)≥ 0 if S ⊆ M, Γ(S|M) = 0
otherwise, and finally ∑S⊆M Γ(S|M) = 1. They impose an additional monotonicity assumption
which says that Γ(S|M)≤ Γ(S|M \{x}) for all x ∈ M \S. Given these, the ram is defined as:

ρ
ram
x (M) := ∑

{S⊆M:x=max(S,≻)}
Γ(S|M)

The random attention model is characterized by the acyclicity imposed on a binary relation
induced from violations of regularity. A violation of regularity implies for the visual choice the
following:

ρx(M)≥ ρx(M \{y}) =⇒ x ∈ s(y,M)

Let xP̃y iff x ∈ s(y,M). The random attention model is characterized by the acyclicity of P̃. It is
easy to show that visual choice can accommodate cycles of P̃, so vc is not nested by ram. On the
other hand, rational visual choice satisfies the acyclicity condition, implying that rational visual
choice can be ‘framed’ as a random attention model suggesting a specific attention process with
a certain level of rationality. Thus, rvc is nested by ram, and hence svc.

Previously, visual choice is shown to to generalize the general Luce model. Specifically,
fixation-independent visual choice generalizes glm, and coincides with it if furthermore the
saccade correspondence is nonempty valued. The restrictions associated with svc makes visual
choice closer to glm, although they are not nested by each other. Next, I show this:

Proposition 6. Satisficing visual choice and general luce model are independent with nonempty
intersection.

Proof. To see that glm is not nested by svc, observe that glm might violate even WST. Consider
three alternatives x,y,z with x ≥ρ y and y ≥ρ z. Furthermore, let c(xy) = xy, c(yz) = yz, and
c(xz) = z. It is straightforward to see by the definition of glm that ρx(xz) = 0, and WST is
violated.

The other side is less trivial. I am going to show that svc might violate cyclical independence.
Consider x1,x2,x3,x4 such that x1 ▷◁ x2 ▷◁ x3, x1 ≻ x3 ≻ x4 and assume that u = v. Let M1 =
x1x2, M2 = x2x3 and M3 = x1x3x4. First, let me check whether ρxi(Mi),ρxi(Mi+1) > 0 for all
i ∈ {1, . . . ,n} holds. Note that ρx1(M1) =

u(x1)
u(x1x2)

and ρx2(M1) =
u(x2)

u(x1x2)
, so these satisfy the

condition. Similarly, the condition holds for the pairs (x2,M2) and (x3,M2). These imply that:

ρx1(M1)

ρx2(M1)
=

u(x1)

u(x2)
&

ρx2(M2)

ρx3(M2)
=

u(x2)

u(x3)

16Luce is a special case of gnp as well, so they have nonempty intersection. Moreover, gnp shows that attribute
rules approximate any rum under a further condition, which implies that gnp and svc are not nested by each other
when this is the case. On the other hand, the issue about MM is more subtle because they assume that there is a
default option. Horan [22] analyzed MM without the default option and showed that the version with and without
default are almost the same from an empirical point of view. In particular, both versions are mainly separated
by the difference in the regularity condition they impose on choice probabilities. It is shown that svc is able to
accommodate violations of regularity. This shows that svc is not nested by mm. On the other hand, mm can
accommodate violations of stochastic transitivity, and hence not nested by svc.
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Cyclical independence condition implies that:

ρx1(M3)

ρx3(M3)
=

ρx1(M1)

ρx2(M1)

ρx2(M2)

ρx3(M2)
=

u(x1)

u(x3)

For the left-hand side, first note that:

ρx1(M3) =
u(x4)

u(M3)

u(x1)

u(x1x3)
+

u(x1x3)

u(M3)

whereas:

ρx3(M3) =
u(x4)

u(M3)

u(x3)

u(x1x3)

which implies that the left-hand side is equal to:

u(x4)u(x1)+u(x1x3)u(x1x3)

u(x4)u(x3)

Thus, the condition implied by cyclical independence is satisfied iff:

u(x3)u(x4)u(x1)+u(x3)u(x1x3)u(x1x3) = u(x1)u(x4)u(x3)

which is equivalent to the following:

u(x3)u(x1x3)u(x1x3) = u(x4)[u(x3)u(x1)−u(x1)u(x3)]

The right-hand side is equal to 0, while the left-hand side is strictly positive, and hence equality
cannot be satisfied.

ES defines two further special cases: two-stage glm and threshold glm. The former is a special
case of glm, while the latter is a further special case. In two-stage glm, the constraint corre-
spondence is defined as the set of undominated alternatives in the relevant menu with respect
to a partial order. This makes the connection between svc and glm more apparent.

Another model closely related is the random reference model (rrm) recently proposed by
Kibris et al [26]. Assume that the DM is endowed with a family of strict complete preference
relations (≻x)x∈X associated with the set of alternatives in X . Furthermore, assume this family
satisfies the condition that if x ≻z y, then x ≻x y. An alternative x in menu M becomes the
reference point of the DM with probability α(M,x). Assume that α(M,x) > 0 for all x ∈ M
and α is regular. Then, rrm is defined as:

ρ
rrm
y (M) := ∑

x∈M
α(M,x)1{y = max(M,≻x)}

It turns out that even svc is not nested by the rrm. To see this, it is sufficient to check the
following characterizing condition of rrm:

ρx(xy) = 0 =⇒ ρx(M) = 0 ∀M ∋ y

It is easy to show that svc can violate this condition. Consider three distinct alternatives x,y,z
such that x ≻ y ≻ z. While ρy(xy) = 0, ρy(xyz)> 0. Thus, the above condition is not satisfied.
The main discussion evolves around the special case of rrm called logit random reference model
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(lrrm). In lrrm, the reference-point distribution is specified using Luce rule as in visual choice,
that is, α(M,x) = sx

∑y∈M sy
where sx is the salience weight associated with x. Thus, rational

visual choice generalizes the logit-random reference model (lrrm), and if s is single-valued
everywhere and satisfies a condition corresponding to the status-quo bias assumption of lrrm,
then it becomes logit rrm. 17 Thus, lrrm lies in the intersection of rational visual choice (and
hence visual choice) and random reference model.

6 Discussion

6.1 Inhibition of Return and Fixation Dependence with a Stopping Point
For the deterministic version of visual choice, I focused on the case where the DM fixates on
one alternative. However, the deterministic version (as opposed to the random version) does not
account for the inhibition of return effect. The experimental studies show that individuals fixate
usually on more than one alternative. Let fi(M) be the ith alternative fixated by the individual,
and define f i(M) := { f1(M), . . . , fi(M)} where f 0(M) = /0. The individual fixates on the most
salient alternative according to u. So:

fi(M) := max(M \ f i−1(M),≻u)

Let k(M) ≤ |M| be the number of alternatives exogenously given conditional on the menu.
Assume for simplicity that this is a uniform number over all menus, so k(M) = k for any menu
M. If k ≥ |M|, this implies necessarily that the DM fixates on |M| alternatives, so the number
of fixations in a menu M is given by min{|M|,k}. The alternatives that are seen by the DM is
given by:

S(M) :=
⋃

i≤k(M)

ŝ( fi(M),M)

Note that this formulation of the ‘seen set’ (see Reutskaya et al. [41]) assumes implicitly that
the DM has perfect memory. Still, the DM does not need to remember these seen alternatives
provided that the brain does not forget them. Since ŝ is assumed to be a singleton, this implies
that for any menu M, the individual will saccade to min{|M|,k}-alternatives, which are not
necessarily different from each other. The deterministic visual choice can be defined as:

c(M) := max(S(M),≻v)

The identification and characterization of this procedure is more complicated, and not analyzed
in this paper. However, I will make several notes regarding satisficing visual choice case. The
deterministic choice rule becomes:

c(M) = max(
⋃
i≤k

D̂( fi(M),M),≻v)

17lrar reduces to deterministic choice when ≻x=≻ for all x ∈ X , which is not the case with svc except binary
menus. On the other hand, if x ≻x y for all x and y distinct, then lrar becomes the Luce rule with s. Thus, letting
u = s (the salience value which determines fixation in svc is equal to salience weight in lrar), the two models
coincide under different scenarios. Recall that svc reduces to Luce rule when all alternatives are incomparable,
while lrar reduces to Luce when all alternatives are strictly comparable but each alternative x favors itself provided
that it is indeed the reference point. One important difference between these models (beyond the interpretation
and their independence) is that the number of primitives rar has directly proportional to the number of alternatives.
In particular, for each alternative, there is an associated preference relation (i.e. |X | preferences), and in addition
there is salience weight (|X | salience weights). On the other hand, svc has 3 primitives, and further assuming u = v
makes this number 2.
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If ⪰ is complete, then the DM always saccades to the set of maximal alternatives in the menu
with respect to ⪰. Because c is a choice function, c(M) ∈ max(M,⪰) when ⪰ is complete. In
particular, c(M) will be the most salient alternative with respect to v among the alternatives in
max(M,⪰).18 If ⪰ is not complete, then the DM does not necessarily choose an alternative
in MAX(M,⪰). However, note that this is guaranteed when the DM fixates on all alternatives,
that is, when k = |M|. Another condition that guarantees this is satisfied is when top-down
preferences affect the bottom-up salience functions. For this, assume that the order induced by
u preserves the order of ⪰, that is, if x ⪰ y, then x ≻u y. This implies that even if k = 1, the first
fixated alternative is an alternative in MAX(M,⪰). Therefore, c(M) ∈ MAX(M,⪰). This is in
line with the observation that the choices of the DM might not be in line with her preferences,
and only influenced by the bottom-up influenced fixations and eye movements of the individual
(see Armel et al. [2]).

6.2 Allowing for a General Saccade Correspondence
Consider again the fixation-dependent saccade without assuming the satisficing structure. As-
sume that the following two conditions are satisfied, which are easily seen to be consistent with
the satisficing case.

• x /∈ s(x,M) ∀x ∈ M & M ∈ X.

• s(x,xy) = y implies that s(y,xy) = /0.

This is plausible given the nature of saccades, because saccadic eye movements occur to differ-
ent alternatives from the fixation point. However, the identification of the primitives < s,u,v >
is problematic.

Denote the revealed saccade correspondence by sR. Consider a binary menu {x,y}. If ρx(xy) =
1, then this reveals that ŝR(x,xy) = x = ŝR(y,xy). Otherwise, y should be chosen with positive
probability either due to a saccade from x or fixation at y and no saccade to x. By definition,
x /∈ sR(x,M), so ŝR(x,xy) = x implies that sR(x,xy) = /0. Now consider the interior probability
case, that is, ρx(xy) ∈ (0,1). Because ρx(xy) ̸= 0, it should be the case that either ŝR(x,xy) ̸= y
or ŝR(y,xy) ̸= y, which is equivalent to ŝR(x,xy) = x or ŝR(y,xy) = x. If the former holds, then
ŝR(y,xy) = y, which is implied by ρx(xy) ̸= 1. Similarly, in the latter case, ŝR(x,xy) = y.

Also, regularity violations provide information about the saccade correspondence. For exam-
ple, consider the larger menu {x,y,z} and assume that ρx(xyz)> ρx(xyz). This is possible only
if x ∈ sR(z,xyz), because otherwise the choice probability of x should decrease due to the in-
crease in the denominator of fixation probability and possibly saccade probability. This can be
generalized to any menu M, so ρx(M∪{z})> ρx(M) implies that x ∈ sR(z,M).

Still, identifying the saccade correspondence fully is problematic. Let me restrict my attention
to rational visual choice. Assume that ρx(xy) = 1, which implies that sR(y,xy) = x. Because
I assume that the visual choice is rational, this reveals that x is strictly better compared to y
when y is the fixation point. If there is no other alternative z such that ρz(yz) = 1, then x is the
only alternative that dominates y with respect to y. This implies that for any M that includes
y, the saccade correspondence will include only x if x ∈ M, and otherwise there would be no
saccade and hence the (induced) saccade correspondence will be equal to x. However, if there
is z such that ρz(yz) = 1, then z also dominates y with respect to y. This arises an issue when

18Later on, I define the notion of compatibility. If compatibility holds here for v, then this implies that for any
x,y ∈ max(M,⪰) one has v(x) = v(y). This is inconsistent with the assumption that ≻v is asymmetric.
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one considers the menu M = {x,y,z} because one needs to reveal the situation with respect
to y between x and z. Assume furthermore that either ρx(xz) = 1 or ρz(xz) = 1, and wlog the
former. The following is an assumption widely used in the literature that deals with status-quo
bias, which is extended to the case of possible indifference here:

• x ≿y z implies that x ≿x z.

Observe that the choice pattern described above is equivalent to the compromise effect, in which
case one would expect that ρy(xyz)< 1. If ρx(xyz)< 1 and the status-quo bias assumption hold,
then this is possible only if z ≿y x, because otherwise saccades only occur to x. Therefore, this
would imply that x and z are indifferent with respect to each other. Since the one of the goals of
the model is to capture such regularities, I viewed two such alternatives as indifferent to each
other with respect to y, which is the case in the satisficing visual choice.

7 Further Discussion and Limitations

7.1 Different Saccade Correspondences
The literature suggests different versions of saccade correspondence. Two interesting versions
inspired by Koch and Ullman [27] are as follows:

• Proximity-based saccade

• Similarity-based saccade

Both can be modeled using the feature spaces assuming that features contain the spatial co-
ordinates. Let x be the fixation point. According to the former correspondence, the DM will
saccade to any alternative that is sufficiently close to the fixation point. The most straightfor-
ward way to capture this is using the Euclidean metric to measure the distance and determining
a certain threshold under which two alternatives are deemed to be close to each other. For
determining the threshold, knowledge coming from the vision literature can be used. Alterna-
tively, one can also assume that this threshold is unknown, and try to infer the threshold from
the choice probabilities. For the latter, one needs to be careful about the choice of distance
function. Although Euclidean metric (or any other metric) can be plausible in certain contexts,
it is established in the literature that a distance function aimed at measuring similarity might
violate the properties of a metric (see for example Tversky [50]). Note that one can also define
a metric that is aimed to measure the contrast rather than the symmetry, and in fact this can be
defined using the similarity metric provided that one assumes two things that are not similar
are different enough.

Alternatively, one can model this by making v fixation-dependent and assuming that saccade
correspondence is equal to the full menu for any fixation point. This implies the following
choice procedure:

ρx(M) := ∑
y∈M

u(y)
u(M)

·

{ vy(x)
vy(M) if x ∈ ŝ(y,M)

0 o.w.

Consider the proximity-based saccade case. Assume for simplicity that each alternative has
a one-dimensional spatial representation (feature s). One can define a threshold-based vy as
follows:

vy(x) :=

{
|xs − ys|−1 if 0 < |xs − ys| ≤ ε

0 o.w.
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for some ε > 0 given exogenously. Thus, the choice probabilities conditional on fixation is
determined through the relative distance of alternatives that are sufficiently close to the fixation
point.

7.2 Menu Dependence
An issue concerning the model discussed in this paper is that both the salience and Luce values
are defined in absolute terms. However, it is possible that both depend on the values other
alternatives takes, so u and v can be functions of other alternatives in the menu. This makes
visual choice menu dependent:

ρx(M) := ∑
y∈M

u(y,M)

∑z∈M u(z,M)
·

{ v(x,M)
∑z∈ŝ(y,M) v(z,M) if x ∈ ŝ(y,M)

0 o.w.
(3)

The divisive normalization method developed in neuroscience of value-based decision making
(see Carandini and Heeger [5]) can be used for determining the choice probabilities conditional
on the fixation. The simplest version of the normalization takes the following form:

v(x,M) =
v(x)

β

√
∑y∈M v(y)β

without taking into account the so-called saturation parameter and the noise. If β = 1, applying
divisive normalization is equivalent to the model in this paper. A recent suggestion by Laundry
and Webb [30] connected to this is pairwise normalization defined as:

v(x,M) =
v(x)

∑y∈M\{x} v(xy)

Regarding the fixation probability, the salience measure developed by Bordalo et al. [3] can be
used. They define a salience function σ such that σ(xi,Mi) measures the salience of feature
i for alternative with respect to Mi := 1

|M| ∑x∈M xi. This function is assumed to satisfy the
properties called ordering and diminishing sensitivity. According to ordering, feature i is more
salient for an alternative when xi is more different from the average value Mi in the menu, and
diminishing sensitivity says that the impact of feature differences decreases as the levels of
the feature increases (Weber-Fechner law of sensory perception). Let ωi(x,M) be the weight of
feature i for alternative x in M, defined as a function of σi(xi,Mi) and σ j(x j,M j) for any feature
j ̸= i. The adjusted visual value function according to this salience can be defined as:

uσ (x,M) := ∑
i≤k

ωi(x,M) · xi

Note that this is differentiated from the u proposed in the definition for visual choice by making
the weight of a feature dependent on other alternatives in the menu using σ .

7.3 Complexity
Reutskaya et al. [41] provide a complexity-constrained visual choice model which is closely
connected to visual choice. Let κ(M) be the probability that menu M is complex, which de-
pends on the complexity of the menu M. Given the menu is complex, the DM chooses each
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alternative with equal probability, and otherwise chooses the best alternative in the seen set.
Thus, the conditional choice probability of x given fixation at y in menu M is given by:

ps
(M,y)(x) = κ(M)

1
|M|

+(1−κ(M))1[max(M,⪰) = x]

To see how this is related to visual choice, consider the fixation-independent saccade corre-
spondence with s(x,M) = M for any x ∈ M. If furthermore v(x) = v(y) for all x,y, then the
choice probability given saccade is uniformly distributed in the menu, so ps

(M,y)(x) =
1
|M| . If

on the other hand s is still fixation-independent but s(x,M) = max(M,⪰), then ps
(M,y)(x) = 1

iff max(M,⪰) = x, and 0 otherwise. Observe that both correspondences satisfy warp, so these
two cases are examples of rational visual choice. However, the visual choice model presented
here does not take into account the complexity of the choice problem.
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Appendix A Proofs

A.1 Proofs for Deterministic Visual Choice
Proof.
Neccessity is already shown. Assume that c satisfies the Condition 1, 2 and 3.

Step 1: ≻R
u is acyclic.

In the main body, I defined z ≻R
u x if there exists a set M such that z ̸= c(M) ̸= c(M \ {z}).

If there is no choice reversal, then Condition 1 implies that c(M) = c(M′) for any M′ ⊆ M
with c(M) ∈ M′. If this is the case, let c(M) ≻R

u x for x ̸= c(M) and x ∈ M. Assume to the
contrary that ≻R

u is cyclic. Then there exist x1,x2, ...,xn such that xi ̸= x j for all i ̸= j, and
x1 ≻R

u x2 ≻R
u ....≻R

u xn ≻R
u x1. By definition and cyclicity, for each i ∈ {1, ...,n} there is Mi ∈ X

such that xi ̸= c(Mi) ̸= c(Mi \xi), where xi+1 ∈ Mi and xi ̸= xi+1. Let M∗ =
⋃n

i=1 Mi and M−J =
M∗ \

⋃
i∈J Mi where J ⊆ {1, ...,n}. Assume wlog that c(M∗) ∈ Mk for some k ∈ {1,2, ...,n}. I

will apply Condition 1 repeatedly and reach a contradiction. Let M = {x1, ...,xn}. If k ̸= 1, start
from the first menu and since x1 ̸= c(M1) ̸= c(M1 \ x1), by Condition 1:

c(M∗) = c(M−1 ∪M∪{c(M∗)})

To see this, note that by the condition c(M∗) = c(M∗ \ z) for any z /∈ {c(M∗),x1}. Then note
that x1 ∈ M∗\{z}, so again by the same condition, c(M∗\{z}) = c((M∗\{z})\{t}) for any t /∈
{x1,c(M∗\{z})} and so c(M∗) = c(M∗\{z}) = c(M∗\{z, t}). Repeating this, c(M∗) = c(M∗\
(M1 \ (M ∪{c(M∗)}))), since M1 \ (M ∪{c(M∗)}) ⊆ M1 \ {c(M∗),x1}. Let M1 = M−1 ∪M ∪
{c(M∗)}. If k ̸= 2, since x2 ̸= c(M2) ̸= c(M2 \x2), we have c(M1) = c(M−{1,2}∪M∪c(M∗)))).
Continuing this way, we have c(M∗) = c(Mk ∪M). 19 Let xl be the largest indexed element in
M∩Mk. If xl−1 /∈ Mk, using condition D we have c(M∗) = c(Mk ∪M) = c(Mk ∪ (M \{xl−1})),
since xl−2 ̸= c(Ml−2) ̸= c(Ml−2 \ xl−2). We can repeat this process until we have c(M∗) =
c(Mk ∪M) = c(Mk)

20 and by assumption c(Mk) ̸= xk. Thus, we know that c(M∗) ∈ Mk \ xk,
but we can apply the same procedure one more time 21 and get c(M∗) = c(Mk \ {xk}) which
implies c(Mk) = c(Mk \{xk}), a contradiction. Therefore, ≻R

u is acylic and we can extend ≻R
u

into a complete preference relation, ≻R
u . The fixation point is defined as:

f R(M) := max(M,≻R
u )

Note that by construction f R(M) satisfies the weak axiom.

Step 2: ⪰R is a partial order.
19Note that we are not doing this for Mk and recall c(M∗) ∈ Mk.
20We start the process by xl , since this gives an algorithm that terminates at the desired result, that is c(M∗) =

c(Mk). The algorithm works in general, we can start with any element x j ∈ Mk ∩M and remove first the element
that is not in Sk and has the largest index smaller than j. If we start with an element that is not in Mk ∩M, since
we continue eliminating one-by-one using elements next to each other, the last element remaining in the process
cannot be eliminated. But since we start the cycle with an element that we are not going to eliminate, the process
reaches the desired point.

21We started with the assumption c(M∗) ∈ Mk and using condition D reached to the conclusion that c(M∗) =
c(Mk), which furthermore implies that c(M∗)∈ Mk \{xk}. So, starting from the beginning, we can derive c(M∗) =
c(Mk \ {xk}) again using D repeatedly, since this time we can directly drop xk ∈ Mk, because we know it is not
chosen from M∗.
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Recall that ⪰R is defined as follows x ⪰R y if y = f R(M) for some M ⊇ {x,y} and c({x,y}) = x.
Reflexivity is trivially satisfied since f R({x}) = max({x},≻R

u ) = x. Similarly, antisymmetry
follows easily, because both x ⪰R y and y ⪰R x cannot happen at the same time. So, only
transitivity is left to prove. This follows by Condition 2. This can be easily seen because it
amounts to ⪰R being transitive. More precisely, because x ⪰R y ⪰R z, it is known that y =
f R(M) for some M ⊇ {x,y} and c({x,y}) = x, and also z = f R(M′) for some M′ ⊇ {y,z} and
c({y,z}) = y. Because f R satisfies the weak axiom, y = f R({x,y}) and z = f R({y,z}), and
hence x = f R({x,z}). By Condition 2, it should be the case that c({x,z}) = x, which implies
by definition that x ⪰R z.

Step 3: ≻R
v is acyclic.

Let x ≻R
v y if there is a menu M s.t. {x,y} ⊆ M and y ∈ DR(M) such that c(M) = x. Assume

to the contrary ≻R
v is cyclic, i.e. x1 ≻R

v x2 ≻R
v ... ≻R

v xn ≻R
v x1 for distinct xi’s from 1 to k and

let xk+1 ≡ x1. By cyclicity and the definition above, there exists Mi’s such that c(Mi) = xi and
xi+1 ∈ DR(Mi) for all i ≤ k. However, this is directly ruled out by the Condition 3, so ≻R

v is
acylic.

Step 3: Sufficiency

There are two cases to consider. If z ̸= c(M) ̸= c(M \ {z}), then by definition z≻R
u x for

all x ∈ M \ {z}. Also, by definition DR(M) = {y ∈ M : y = c({y,z})}. By Condition 1,
c(M) = c({c(M),z,y}) and hence by definition c(M)≻R

v y for all y ∈ M\{c(M)}. Thus, c(M) =
max(DR(M),≻R

v ), and hence it is visual choice. If there is no z ∈ M \ {c(M)} such that
c(M) ̸= c(M \{z}), then by Condition 1, c(M) = c(M′) for all M′ ⊆ M with c(M) ∈ M′. In this
case, f R(M) = c(M) and hence c(M)≻R

u y for all y ∈ M \{c(M)}. By Condition 1, there is no
z such that c({c(M),z}) = z, so DR(M) = {c(M)}. This shows that c(M) = max(DR(M),≻R

v ),
and hence it is visual choice also in this case. This concludes the proof.

A.2 Proofs for Rationality of SVC

The following is a result shown in Ok and Tserenjigmid (henceforth OT) that is going to be
used in the following results.

Proposition 7. ρ is maximally (minimally) rational iff ρ is λ -rational (not λ -rational) ∀λ ∈
[0,1].

Now, I am going to provide the characterization presented by OT for ⊵r in order to operational-
ize the comparative rationality ordering.

Ch(ρ) :=
⋃

{S,M∈X:S⊆M,x∈S}
(ρ∗

x (S),ρ
∗
x (M)]

Con(ρ) :=
⋃

{M∈X:x∈M}
(ρ∗

x (M),miny∈Mρ
∗
x (xy)]

ST(ρ) :=
⋃

x,y,z∈X

(max{ρ
∗
y (xy),ρ∗

z (yz)},ρ∗
z (xz)]
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For example, if λ ∈ Ch(ρ) defined above, then this means that Chernoff axiom is violated by
rcf ρ and therefore ρ is not λ -rational. From these three sets, one can define the following:

Λ(ρ) := Ch(ρ)∪Con(ρ)∪ST(ρ)

OT shows that for any pair of rcfs ρ and ρ̃:

ρ ⊵r ρ̃ ⇐⇒ Λ(ρ)⊆ Λ(ρ̃)

The rationality index which enables one to compare all rcfs as opposed to the partial order ⊵r
is defined as:

ιr(ρ) := 1− l(Λ(ρ))

where l denotes the Lebesgue measure. This index is consistent with the partial order, and
attaches a value of 1 (0) iff a rcf is maximally (minimally) rational. Two simplifications with
regard to computing the rationality index are the following.

Lemma 1. ST(ρ) = /0.

Proof. In Proposition 4 it is shown that svc satisfies MST. OT shows that ST(ρ) = 0 for any
rcf that satisfies MST.

Lemma 2. If ⪰ is complete, then Con(ρ) = /0.

Proof. Consider x,y∈X and assume wlog y≻ x. When this is the case, ρy(xy)= 1 and ρx(xy)=
0, which further implies that ρ∗

y (xy) = 1 and ρ∗
x (xy) = 0. Thus, miny∈Mρ∗

x (xy) = 0 for any M
such that y ∈ M and y ≻ x. This results in /0 for all such menus x is in because (ρ∗

x (M),0] = /0.
Therefore, consider any menu M in which x is undominated, i.e. there is no y ∈ M such that
y ≻ x. By completeness of ⪰, this is possible only when x ≻ y for all y ∈ M\{x}, which implies
miny∈Mρ∗

x (xy) = 1. Furthermore, ρ∗
x (M) = 1 for all such menus by monotonicity shown in

Proposition ??. This also induces /0 since (1,1] = /0. Therefore, Con(ρ) = /0.

Proof of Theorem 2

Proof. The previous observations show that I only need to check the Chernoff set Ch(ρ). Also,
I showed that svc satisfies monotonicity in Proposition ??. Let ρi(M) denote the choice prob-
ability of the ith best product in M with respect to ⪰. Compatibility of v implies monotonicity,
and this in turn implies that ρi(M)≥ ρi+1(M) for all i ∈ {1,2, . . . , |M|−1}. max(X ,⪰) is cho-
sen in every menu it is present with probability 1, and hence induces /0. The same holds for
min(X ,⪰), but now because it is chosen with 0 probability in any menu it is present. In general,
any alternative that is worst with respect to ⪰ in a menu is chosen with 0 probability. Consider
iX for some i /∈ {1, |X |}. If say i = 2, then 2X is chosen with 0 probability in a menu M iff
M = {1X ,2X}. If i = 3, then M should contain either 1X or 2X without containing any jX such
that j > i. In general, ρ∗

iX (M) = 1 if jX /∈M for any j < i. This implies that iX induces the empty
set if ρ∗

iX (M) = 1, because this implies ρ∗
iX (S) = 1 for any S ⊆ M that has iX . Therefore, con-

sider M ∋ jX for some j < i. The lower bound takes the smallest value when iX is the ⪰-worst
product in S, which is equal to 0. Letting ρ

∗
iX ≡ max{M∈X:∃ j<i:{iX , jX}⊂M}ρ∗

iX (M), this shows
that the set induced by iX is equal to (0,ρ∗

iX ]. This implies that Ch(ρ) =
⋃

i∈{2,...,|X |−1}(0,ρ
∗
iX ],

which proves that any two rcfs are comparable with each other. To see that any svc is not maxi-
mally/minimally rational, note that the upper bound ρ

∗
iX is always strictly positive, because any

iX such that i ∈ {2, . . . , |X |−1} contains at least one alternative that it is strictly preferred, and
hence chosen with strictly positive probability. This shows that ιr(ρ) ∈ (0,1) for any ρ when-
ever ⪰ is complete. This shows that svc is not maximally/minimally rational by Proposition 7.

Proof of Theorem 3
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Proof. I start by showing the if part. For this, I will use the fact that Luce rule is maximally
rational as shown in OT. I am going to show that svc is Luce rule iff all alternatives are compa-
rable. For the if part, assume no alternatives are (strictly) comparable. When this is the case,
D(x,M) = /0 for any x ∈ X , which implies that:

ps
(M,x)(y) =

{
1 if y = x
0 if y ̸= x

So, the choice probabilities are fully determined by the fixation probabilities, and hence:

ρy(M) =
u(y)
u(M)

for any M ∋ y. For the only if part, assume that svc is Luce, i.e. ρy(M) = u(y)
u(M) for any y∈M and

M ∈ X. In particular, consider a binary menu {x,y}. By definition of svc, ρy(xy) > 0 implies
that x ▷◁ y. This implies that all alternatives are incomparable.

For the second case, assume that there is a unique alternative that dominates the rest of the
alternatives, say x, and the rest of the alternatives are incomparable. First, I show that this
is maximally rational. Because x ≻ y for all y ̸= x and there are no paths, neither y ≻ z nor
z ≻ y for any y,z ∈ X \{x}. Thus, y ▷◁ z for any such y,z. Because MST holds, only Chernoff
and Condorcet axioms need to be checked. In particular, I am going to check the stochastic
analogues of these conditions shown in OT, which they operationalize using the set-theoretic
approach provided above.

Consider any menu S,T such that S ⊆ T and x /∈ T . So, S and T consists of incomparable
pairs, which implies that both Chernoff and Condorcet are satisfied because the rcf restricted to
such menus reduces to Luce rule as shown before, which is maximally rational. Now assume
that x ∈ T . I will first check Chernoff axiom. Since x dominates all other alternatives and
otherwise alternatives are incomparable, ρx(T ) = 1 and ρy(T ) = 0 for any y ̸= x, so the choice
probabilities are deterministic. For any S such that x ∈ S, the same deterministic choice holds,
and therefore Chernoff is not violated. If x /∈ S, then Chernoff is not violated since ρy(T ) = 0
and ρy(S)> 0 for any y ̸= x.

Now I need to check the Condorcet axiom. Take a menu S with x ∈ S: ρ∗
s (st) > 0 iff s = x

or x /∈ {s, t}. In the former case, ρ∗
x (xy) = 1 for any y ∈ S, and also ρ∗

x (S) = 1, which shows
Condorcet holds. In the latter case:

ρ
∗
y (yz) =

{
u(y)
u(z) if u(y)< u(z)

1 if u(y)> u(z)

because the remaining alternatives excluding x are incomparable. If S includes an alternative z
such that u(y) < u(z), then ρ∗

y (S) =
u(y)
u(z∗) where z∗ is the alternative with highest u value in S.

Note that ρ∗
y (yz∗) = u(y)

u(z∗) and this is the lowest value y’s choice probability takes in a binary
menu with alternatives from S. This shows that Condorcet is satisfied. If there is no such z, then
ρ∗

y (S) = 1. Thus, Condorcet is also satisfied in this case. Therefore, svc is maximally rational
also in this case.

Now, I show the equivalence between this case and almost Luce rule. Since x dominates all
other alternatives, ρx(T ) = 1 and ρy(T ) = 0 for any y ̸= x, so the choice probabilities are
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deterministic for any menu that contains x. Because the remaining alternatives excluding x are
incomparable, for any S such that x /∈ S, the choice probabilities are ρy(S) =

u(y)
u(S) for any y ∈ S.

This shows that this case results in almost Luce. For the converse direction, assume svc is
almost Luce, and consider any binary menu including x, say {x,y}. Since ρx(xy) = 1 for any
such binary menu and by definition of svc, it follows that x ≻ y. The same holds for all such
menus, and hence x ≻ y for any y ̸= x. For any {y,z} distinct from x, ρy(yz),ρz(yz) ∈ (0,1), so
y ▷◁ z.

For the only if part, I am going to show the contrapositive. Let P≻ be the set of all (strictly)
comparable pairs. The contrapositive statement corresponds to the following: if there is at least
one (strictly) comparable pair (|P≻| ≥ 1) and either there is no unique dominating alternative
x such that x ≻ y for all y ̸= x (because there cannot be more than one dominating alternative)
or even if there is such an x there exists a distinct pair (y,z) of alternatives that are comparable,
then svc is not maximally rational. Thus, assume that |P≻| ≥ 1.

I start by showing if there is at least one path of the form x ≻ y ≻ z for some x,y,z, then svc
is not maximally rational (which also implies that if ⪰ is complete, then svc is not maximally
rational, already shown in the previous result). Consider the path x ≻ y ≻ z. Let S = {x,y}
and T = {x,y,z}. This implies that ρy(T ) =

u(z)
u(T ) ·

v(y)
v(xy) and hence ρ∗

y (T ) > 0. On the other
hand, ρy(S) = 0 because x ≻ y, which implies that ρ∗

y (S) = 0. Thus, y ∈ Cρ,0(T )∩ S but
y /∈ Cρ,0(S), which violates the Chernoff axiom for λ = 0. This also implies that if there
is a unique dominating alternative with at least one distinct comparable pair, then svc is not
maximally rational.

Given the last observation, assume that there is no path of the form above, and also that there
is no alternative dominating the rest of the alternatives. Because there is at least a pair that is
comparable and there is no dominating alternative, X should contain at least three alternatives.
Thus, for any x ∈ X , if x ≻ y for some y ̸= x, then there is some z such that x ▷◁ z for which it
cannot be the case that z ≻ x or y ≻ z. So, for any z, x ▷◁ z and either y ▷◁ z or z ≻ y. Since paths
are excluded, it cannot be the case that x ≻ z and z ≻ y. This implies that the following are the
possible paths involving these three alternatives:

• P1 x ≻ y, x ▷◁ z and y ▷◁ z.

• P2 x ≻ y, x ▷◁ z and z ≻ y.

Let me start by demonstrating that P1 is not maximally rational. Assume first u(x)≥ u(z). This
implies that ρx(xz) = u(x)

u(xz) ≥
u(z)
u(xz) = ρz(xz), so ρ∗

z (xz) = u(z)
u(x) . Assessing ρ∗

z (yz) depends on the
comparison between u(y) and u(z):

ρ
∗
z (yz) =

{
1 if u(z)> u(y)
u(z)
u(y) o.w.

For the trinary menu {x,y,z}, ρx(xyz) = u(xy)
u(xyz) and ρz(xyz) = u(z)

u(xyz) . Since u(x) > u(z) and

u(xy) > u(z), ρ∗
z (xyz) = u(z)

u(xy) . Condorcet condition says that ρ∗
z (xyz) ≥ min{ρ∗

z (xz),ρ∗
z (xz)},

which implies ρ∗
z (xyz) ≥ min{ u(z)

u(x) ,
u(z)
u(y)}. However, this contradicts with the above, and there-

fore Condorcet is violated when u(x)> u(z).
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Now assume that u(z)> u(x). Then:

ρ
∗
x (xyz) =

{
1 if u(z)< u(xy)
u(xy)
u(z) o.w.

Since u(z)> u(x), ρ∗
x (xz) = u(x)

u(z) . If furthermore u(z)> u(xy), this violates the Chernoff axiom

by choosing λ ∈ (u(x)
u(z) ,

u(xy)
u(z) ). Otherwise, ρ∗

z (xyz)< 1 because ρx(xyz)> ρz(xyz). On the other
hand, ρ∗

z (xz) = 1 = ρ∗
z (yz), following because z is incomparable to x and y with u(z)> u(x)>

u(y), where the latter inequality holds by the consistency between ≻ and u. This violates the
Condorcet axiom. Thus, for the case of P1, svc is not maximally rational.

Consider the case P2. Assume first u(x)> u(z). Note that this and x ≻ y implies ρ∗
x (xz) = 1 =

ρ∗
x (xy). If furthermore ρ∗

x (xyz)< 1, this violates the Condorcet axiom. Assume that this is not
the case, so ρ∗

x (xyz) = 1, which implies that ρ∗
z (xyz)< 1. In particular:

ρ
∗
z (xyz) =

u(z)v(xz)+u(y)v(z)
u(x)v(xz)+u(y)v(x)

This expression is strictly larger than u(z)
u(x) , which is equal to ρ∗

z (xz). To see this, note that the
former is greater than or equal to the latter iff u(x)v(z) ≥ v(x)u(z). Since x ▷◁ z and (u,v) is
strongly compatible, u(x) > u(z) implies that v(z) > v(x). Thus, the inequality holds strictly.
But then there is λ that lies strictly between u(z)

u(x) and u(z)v(xz)+u(y)v(z)
u(x)v(xz)+u(y)v(x) , which contradicts the

Chernoff axiom since z ∈ Cλ (xyz)∩{xz} but z /∈ Cλ (xz). If u(z) > u(x), then one can show
that Chernoff is violated in the same way. This implies that ρ∗

x (xz) = u(x)
u(z) and ρ∗

z (xz) = 1.
If ρ∗

x (xyz) = 1, this contradicts Chernoff because x ∈ Cλ (xyz)∩{xz} but x /∈ Cλ (xz) for some
λ > u(x)

u(z) . Otherwise, ρ∗
x (xyz)< 1, that is, ρx(xyz)< ρz(xyz). This implies that:

ρ
∗
x (xyz) =

u(x)v(xz)+u(y)v(x)
u(z)v(xz)+u(y)v(z)

Similar to the above, one can show that this expression is strictly larger than ρ∗
x (xz) = u(x)

u(z) ,
which follows because this is true iff u(z)v(x) ≥ v(z)u(x), and this is implied since x ▷◁ z and
(u,v) is strongly compatible. This concludes the proof.

A.3 Proof for the Characterization of SVC

Necessity of the Conditions:

Lemma 3. If ρ can be represented by svc, then it satisfies Condition 9.

Proof. If adding z violates regularity, then ρx(M)
ρx(M\{z}) > 1 > 1−ρx(M)

1−ρx(M\{z}) , and therefore the mini-

mum value is equal to 1−ρx(M)
1−ρx(M\{z}) . Note that

gx(M)

gx(M \{z})
· (1−ρx(M \{z}))

=
u(M \{z})

u(M)

(
1− ∑

y∈M\{z}:x⪰y

u(y)
u(M \{z})

v(x)
v(D(y,M))

) (4)
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because gx(M)
gx(M\{z}) =

u(M\{z})
u(M) and ρ has svc representation. The right-hand side of this equality

simplifies to:
u(M \{z})

u(M)
− ∑

y∈M\{z}:x⪰y

u(y)
u(M)

v(x)
v(D(y,M))

The second term of this equation is equal to ρx(M)− u(z)
u(M) ·

v(x)
v(D(z,M)) because regularity violation

implies that x strictly dominates z, which implies the following final equality:

gx(M)

gx(M \{z})
· (1−ρx(M \{z})) = u(M \{z})

u(M)
+

u(z)
u(M)

· v(x)
v(D(z,M))

−ρx(M)

This expression is less than or equal to 1−ρx(M). On the other hand, when regularity is not
violated, the minimum value is equal to ρx(M)

ρx(M\{z}) and gx(M)
gx(M\{z}) ≤

ρx(M)
ρx(M\{z}) needs to be shown.

Note that by Equation 4, the following equality holds:

gx(M)

gx(M \{z})
·ρx(M \{z}) = u(M \{z})

u(M)
· ∑

y∈M\{z}:x⪰y

u(y)
u(M \{z})

v(x)
v(D(y,M))

which is easily seen to be strictly less than ρx(M) if x ≻ z, and equal if x ▷◁ z.

The proof will proceed in several steps.

1: Revealed dominance relation is a partial order.

I start by showing that the revealed preferences, denoted ⪰, is a partial order. By definition,
x⪰ x because ρx(x)= 1. To show transitivity, assume that x⪰ y⪰ z. By definition, ρx(xy)= 1=
ρy(yz). Because of Condition 4, this implies that ρx(xz) = 1, so x ⪰ z and hence ⪰ is transitive.
Finally, to show antisymmetry, let x ⪰ y ⪰ x, which implies that ρx(xy) = 1 = ρy(xy). This is
only possible when x = y, and hence ⪰ is antisymmetric. This shows that ⪰ is a partial order.

Given ⪰, define D(y,M) = {x ∈ M : x ≻ y}.

2: Useful Lemmas

Condition 11. Strong Rationalizability
ρx(M) = 1 iff ρx(xy) = 1 and ρy(yz) ∈ (0,1) for all y,z ∈ M \{x}.

Lemma 4. Rationalizability and Dominance Transitivity implies Strong Rationalizability.

Proof. Assume first ρx(M) = 1. This holds iff ρy(M) = 0 for all y ̸= x in M. The contrapositive
of the if part of the rationalizability condition says that for any y,z ∈ M \ {x} such that y ̸= z,
ρy(yz) < 1 and there is a such that ρy(ya) = 0. The latter implies that for any such y, there is
a that dominates y. Since the latter holds for any y ∈ M \ {x}, this leads to a cycle unless x
dominates all, which cannot be the case by dominance transitivity and the fact that it implies
⪰ is transitive. But then it should be the case that ρx(xy) = 1 for all y ∈ M \ {x}, that is,
ρy(xy) = 0 for all y ∈ M \{x}. For the former, note that ρy(yz) = 0 implies that ρz(yz) = 1, but
then ρz(M) > 0 by rationalizability leading to a contradiction because ρx(M) = 1. Therefore,
ρy(yz) ∈ (0,1), concluding the only if part of the proof. For the if part, assume that ρx(xy) = 1
and ρy(yz) ∈ (0,1) for all y,z ∈ M \ {x}. The former holds iff ρy(xy) = 0 for any x ̸= y, so
none of the conditions for the rationalizability is satisfied. The contrapositive of the if part then
implies that ρy(M) = 0 for all y ̸= x in M, and therefore ρx(M) = 1.
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Condition 12. Weak Positivity
ρx(xy) ∈ (0,1) for any {x,y} ⊆ M iff ρx(M) ∈ (0,1) for all x ∈ M.

Lemma 5. Rationalizability and Dominance Transitivity implies Weak Positivity.

Proof. Assume first ρx(xy) ∈ (0,1) for all ∀x,y ∈ M. This directly implies ρx(M) > 0 by
rationalizability for all x. For the other side, assume ρx(M) ∈ (0,1) for all x ∈ M. By ratio-
nalizability, either there is an alternative y ∈ M \ {x} such that ρx(xy) = 1 or ρx(xy) ∈ (0,1)
for all y ∈ M \ {x}. Consider a chain of alternatives that satisfy the former condition, say
{m1,m2, . . . ,mk} ⊆ M with ρmi(mimi+1) = 1 for any i ≤ k−1. Assume that this is the largest
chain that includes {m1,m2, . . . ,mk}, so there cannot be a subset S such that {m1,m2, . . . ,mk}⊂
S ⊆ M and the alternatives in S can be ordered in a chain. By definition, ρmk(mkmi) = 0 for any
i ∈ {1, . . . ,k}. Since this is a largest chain, mk should be incomparable to the rest of the alter-
natives, so ρmk(xmk) ∈ (0,1) for any x ∈ M \ {m1,m2, . . . ,mk}. Thus, mk does not satisfy any
features in the rationalizability condition, so ρmk(M) = 0. This is a contradiction to positivity
on M, and therefore there cannot be such a chain. This concludes the proof because only the
second condition for rationalizability can be satisfied for all alternatives in M.

Lemma 6. Condition 8 and Condition 9 imply that if ρz(M) = 0 and ρy(yz) ∈ (0,1), then the
following holds:

ρy(M \{z})−ρy(M) = gz(M) ·ρy(M \{z})

Proof. Because ρz(M) = 0 and ρy(yz) ∈ (0,1), Condition 9 implies that:

gy(M)

gy(M \{z})
=

ρy(M)

ρy(M \{z})

Also, Condition 8 says that:

1−gz(M) =
gy(M)

gy(M \{z})
for any distinct y,z ∈ M. These two equalities imply:

1−gz(M) =
ρy(M)

ρy(M \{z})

which implies the conclusion.

3: Constructing Fixation Value

Lemma 7. Assume that ρ satisfies Conditions 4 and 7. Then, there exists a function u which
can be derived from binary choice probabilities.

Proof of Lemma 7

I start by constructing the fixation probabilities. Let P be a partition of X such that x and y are
in the same cell of the partition iff there is an incomparability path {zi}k

1 from x to y such that
z1 ≡ x and zk = y with x and y being incomparable too. Take a cell in the partition and choose
some x, and let u(x) = 1. Since zi and zi+1 are incomparable to each other, one can define:

gzi(zizi+1) := ρzi(zizi+1)
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Given these, one can define u(y) for y in the same cell of the partition as:

u(y) =
gz2(z1z2)

gz1(z1z2)
· gz3(z2z3)

gz2(z2z3)
· · · · ·

gzk(zk−1zk)

gzk−1(zk−1zk)

This can be shown to be well-defined. First of all, u(y) is a strictly positive real number because
{zi}k

1 is an incomparability path. Secondly, different incomparability paths lead to the same
result by Condition 7. Consider another incomparability path {z′i}L

1 such that z′1 ≡ x and z′l = y.
Condition 7 implies the following:

1 =
gz2(z1z2)

gz1(z1z2)
· gz3(z2z3)

gz2(z2z3)
· · · · ·

gzk(zk−1zk)

gzk−1(zk−1zk)
·

gz′l−1
(z′l−1z′l)

gz′l
(z′l−1z′l)

·
gz′l−2

(z′l−2z′l−1)

gz′l−1
(z′l−2z′l−1)

· · · · ·
gz′1

(z′1z′2)

gz′2
(z′1z′2)

which shows that

gz1(z1z2)

gz2(z1z2)
· gz2(z2z3)

gz3(z2z3)
· · · · ·

gzk−1(zk−1zk)

gzk(zk−1zk)
=

gz′1
(z′1z′2)

gz′2
(z′1z′2)

·
gz′2

(z′2z′3)

gz′3
(z′2z′3)

. . .
gz′l−1

(z′l−1z′l)

gz′l
(z′l−1z′l)

and hence u is well-defined. Let gx(M) be defined as:

gx(M) :=
u(x)
u(M)

for any menu M and x ∈ M.

4: Constructing Saccade Probabilities

Consider the following connectedness relation: x,y are said to be connected to each other if both
strictly dominates some distinct z in some menu M with ρz(M) = 0. Take the transitive closure
of this relation, and collect all alternatives that are connected to each other according to this
relation. It is easy to see that this relation is reflexive and symmetric, and furthermore transitive
because transitive closure is taken. This constitutes a partition. Consider any alternative x in
a cell of this partition, and let v(x) = 1. v(y) can be defined for any y in the same cell by
considering the path that connects x and y. Let {ti}k

i=1 be a path that connects these such that
t1 ≡ x and tk ≡ y, and Mi be the corresponding menu in which one can find a strictly dominated
alternative by ti and ti+1. Define the following function:

hx(z,M) :=
(

1
gz(M)

)
ρx(M)−

(
1−gz(M)

gz(M)

)
ρx(M \{z})

Then, one can define:

v(y) :=
ht1(z1,M1)

ht2(z1,M1)
· ht2(z2,M2)

ht3(z2,M2)
· . . .

htk−1(zk−1,Mk−1)

htk(zk−1,Mk−1)

The construction of the saccade values are like the construction of fixation value u, and proof
proceeds along similar lines with the difference that now Condition 10 is used to show it. This
condition shows only that two different paths lead to the same result, however, one needs to
show also that h is well-defined in order to have a well-defined v. First, note that:(

1
gz(M)

)
ρx(M)−

(
1−gz(M)

gz(M)

)
ρx(M \{z})≥ 0
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iff: (
1

gz(M)

)
ρx(M)≥

(
1−gz(M)

gz(M)

)
ρx(M \{z})

which is equivalent to:
ρx(M)

ρx(M \{z})
≥ 1−gz(M)

This is implied by Condition 8 and Condition 9. On the other hand:(
1

gz(M)

)
ρx(M)−

(
1−gz(M)

gz(M)

)
ρx(M \{z})≤ 1

iff: (
1

gz(M)

)
ρx(M)≤ gz(M)+(1−gz(M))ρx(M \{z})

gz(M)

equivalent to:
ρx(M)≤ ρx(M \{z})+gz(M)(1−ρx(M \{z}))

This holds true iff:
ρx(M)−ρx(M \{z})

1−ρx(M \{z})
≤ gz(M)

By Condition 8, gz(M) = 1− gx(M)
gx(M\{z}) , which further implies that this condition holds when:

1−ρx(M)

1−ρx(M \{z})
≥ gx(M)

gx(M \{z})

which is also implied by the same condition. So, h is well-defined. From now on, define the
saccade probabilities as:

φx(y,M) :=

{ v(x)
v(D̂(y,M))

if x ∈ D̂(y,M)

0 o.w.

The following lemma will be used in the following parts.

Lemma 8. If |D(y,M)|> 1 and ρy(M) = 0, then φx(y,M) = hx(y,M).

Proof. To define φx(y,M), the construction of v is used. Since |D(y,M)| > 1, the cell that
contains x also contains some z that dominates y. By definition, φx(y,M) = v(x)

v(D(y,M)) . For the

construction, assume wlog that z is the fixed alternative in the cell and let v(x) = hx(y,M)
hz(y,M) . This

implies that:

φx(y,M) =

hx(y,M)
hz(y,M)

∑x′∈D(y,M)
hx′(y,M)
hz(y,M)

One can directly cancel hz(y,M) from both sides, implying that showing the claim φx(y,M) =
hx(y,M) is equivalent to showing ∑x′∈D(y,M) hx′(y,M) = 1. By definition of h, this is equivalent
to showing:

1 =

(
1

gy(M)

)
∑

x∈D(y,M)

ρx(M)−
(

1−gy(M)

gy(M)

)
∑

x∈D(y,M)

ρx(M \{y})
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The right-hand side of this can written in the following way:(
1

gy(M)

)
∑

x∈D(y,M)

[ρx(M)−ρx(M \{y})]+ ∑
x∈D(y,M)

ρx(M \{y})

Since ρy(M) = 0, y is either dominated by or incomparable to another alternative in M. There-
fore, the change in probabilities due to D(y,M) is balanced by the change in probabilities of
alternatives not in D(y,M), and these alternatives are the alternatives that are incomparable to
y. Thus, it follows that:(

1
gy(M)

)
∑

x∈M:x▷◁y
[ρx(M \{y})−ρx(M)]+ ∑

x∈D(y,M)

ρx(M \{y})

Since ρy(M) = 0 and ρx(xy) ∈ (0,1) for any x ▷◁ y by the definition of ▷◁, Lemma 6 implies
that ρx(M \{y})−ρx(M) = gy(M) ·ρx(M \{y}). Therefore, the above expression becomes:(

1
gy(M)

)
∑

x∈M:x▷◁y
gy(M) ·ρx(M \{y})+ ∑

x∈D(y,M)

ρx(M \{y})

which is equal to:
∑

x∈M:x▷◁y
ρx(M \{y})+ ∑

x∈D(y,M)

ρx(M \{y})

and this is equal to 1 because ρy(M) = 0 and all alternatives are either incomparable to or
dominates y.

This shows that whenever |D(y,M)|> 1 and x ∈ D(y,M), one can use directly the h-function to
define the saccade probability of x:

φx(y,M) =

(
1

gz(M)

)
ρx(M)−

(
1−gz(M)

gz(M)

)
ρx(M \{z})

Representation if ρ satisfies positivity

Let me start by considering the case at which ρx(M) > 0 for all x ∈ M. Note that by Condi-
tion 12, positivity on M implies positivity is satisfied in binary menus. Thus, one has:

gx(xy)
gy(xy)

=
ρx(xy)
ρy(xy)

and by what is shown before:
gx(xy)
gy(xy)

=
u(x)
u(y)

Consider z ∈ M, by positivity on binary menus, Condition 6 implies that ρx(M)
ρy(M) =

ρx(M\{z})
ρy(M\{z}) . One

can repeatedly apply this condition to reach:

ρx(M)

ρy(M)
=

ρx(xy)
ρy(xy)

=
u(x)
u(y)

which implies that:
1−ρx(M)

ρx(M)
=

∑y∈M\{x} u(y)
u(x)
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concluding the proof.

Representation for menus with at most 3 alternatives

Consider any M = {x,y,z} which does not necessarily involve distinct alternatives but at least
two alternatives, since otherwise the characterization is trivial. Recall that φx(y,M) denote
the revealed saccade probability from y to x in menu M. For binary menus, either the choice
probabilities are deterministic or both interior. Consider menu M = {x,y} and assume wlog
ρx(xy) = 1. This shows x ≻ y, and the representation holds also in this case. Finally, as-
sume ρx(xy) ∈ (0,1). In this case, by the definition of saccade probabilities, φs(s,xy) = 1 and
φs(t,xy) = 0 when s ̸= t. The fixation probability can be directly identified by comparing x and
y as it is done previously, so it is given by gs(xy) = ρs(xy). But then ρs(xy) = gs(xy) ·φs(s,xy),
so the representation holds in this case too. Now assume |M|= 3. The case of ρs(M)> 0 for all
s ∈ M is implied by the proof of the representation for ρ satisfying positivity, so I will assume
that there is at least one alternative chosen with probability 0.

Case 1: ρs(M) = 1.

This implies that ρt(M)= 0 for any t ∈M\{s}. By Condition 11, ρs(sy)= 1 for any y∈M\{s},
which implies that s ≻ y for all such y. Therefore, the definition of saccade probability implies
that φs(t,M) = 1 for any t ∈ M, and equals to 0 for all alternatives except 0 also by definition.
This implies that the representation holds in this case.

Case 2: ρs(M) = 0 for a unique s ∈ M, positive otherwise.

Condition 12 shows that not all alternatives are incomparable. This implies that there is at least
one comparable pair. Assume that s = z. It cannot be the case that z dominates one of the
remaining alternatives by Condition 5, so ρz(xz),ρz(yz)< 1. Furthermore, it cannot be the case
that ρz(xz),ρz(yz)> 0 again by Condition 12. Hence, at least one of the remaining alternatives
dominates z and z dominates none. Assume wlog x dominates z, that is, ρx(xz) = 1. There are
several subcases.

• (Subcase 1: ρy(yz) = 1)

There are three subcases given ρy(yz) = 1. It is possible that ρx(xy) = 1, ρy(xy) = 1 or
ρx(xy),ρy(xy) ∈ (0,1). First two cases are symmetric to each other, so assume wlog that
ρx(xy) = 1. So, ρy(xy) = 0. This reveals that x ≻ y ≻ z. Applying the definition φ for x
results in:

φx(z,M) = (
1

gz(M)
)ρx(M)− (

1−gz(M)

gz(M)
)ρx(M \{z})

=
ρx(M)

gz(M)

because ρy(xz) = 0. Similarly, one can get:

φy(z,M) =
ρy(M)

gz(M)

The definition directly implies that φx(y,M) = 1, φy(x,M) = 0 = φy(y,M) and finally
φz(s,M) = 0 for s ∈ M. Since ρz(M) = 0, ρx(M) = 1 − ρy(M). By definition, 1 =
gx(M)+gy(M)+gz(M), which implies that ρx(M) = gx(M)+gy(M)+gz(M)−ρy(M).
Since φx(s,M) = 1 for s ̸= z and φx(z,M) =

gz(M)−ρy(M)
gz(M) , this is equivalent to:

ρx(M) = gx(M) ·φx(x,M)+gy(M) ·φx(y,M)+gz(M) ·φx(z,M)
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which shows that ρx(M) can be represented by svc. It is straightforward to see the same
for ρy(M), because ρy(M) = gz(M) · ρy(M)

gz(M) = gz(M) · φy(z,M). Finally, ρz(M) = 0 by
assumption, and it can be represented by svc. These show that the representation holds
for this case.

Now assume that ρx(xy) ∈ (0,1). Since by assumption ρx(xz) = 1, this implies x,y ≻ z
and x ▷◁ y. Since x ▷◁ y, ρx(xy) = gx(xy). Applying the definition:

φx(z,M) = (
1

gz(M)
)ρx(M)− (

1−gz(M)

gz(M)
)ρx(M \{z})

= (
1

gz(M)
)ρx(M)− (

1−gz(M)

gz(M)
)gx(xy)

=
ρx(M)−gx(xy)(1−gz(M))

gz(M)

By Condition 8, 1− gz(M) = gx(M)
gx(M\{z}) . This implies that gx(xy)(1− gz(M)) = gx(M),

and therefore:

φx(z,M) =
ρx(M)−gx(M)

gz(M)

The same arguments apply to y, so:

φy(z,M) =
ρy(M)−gy(M)

gz(M)

This implies:
gx(M)+gy(M) ·φx(y,M)

= gx(M)+gy(M) · ρx(M)−gx(M)

gy(M)

= ρx(M)

and similarly for ρy(M). The case for ρz(M) = 0 is trivial. So, the representation also
holds in this case.

• (Subcase 2: ρy(yz) ∈ (0,1))

This implies that y and z revealed to be incomparable to each other. Furthermore, observe
that ρx(xy) ∈ (0,1). To see, note that if ρy(xy) = 1, then ρy(yz) = 1 by Condition 4, a
contradiction. If ρx(xy) = 1, then ρy(M) = 0 by Condition 5. Since ρz(M) = 0 and it is
revealed that it is dominated by x with being incomparable to y, the representation holds
for z. Because y is incomparable to the rest, it can be represented as in Case 2. Finally,
ρx(M) = 1−ρy(M) because ρz(M) = 0, and since ρy(M) = gy(M),

ρx(M) = gx(M)+gz(M) = gx(M) ·φx(x,M)+gz(M) ·φx(z,M)

where both φx(x,M) and φx(z,M) are equal to 1 by definition, concluding the proof.

Representation for any menu

The svc representation is shown for all menus of size at most 3. I am going to show that this
holds generally using induction. So, assume that the representation holds for all menus with at
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most k cardinality for some k ≥ 3, and consider now a menu M such that |M| = k+ 1. There
are several cases to consider.

Since the proof for ρ that satisfies positivity is shown, let me assume that ρs(M) = 0 for some
s ∈ M. First, consider the case when ρx(M) = 1 for some x ∈ M. By Condition 11, ρx(xy) = 1
and ρy(yz) ∈ (0,1) for all y,z ∈ M \ {x}. The former implies that x ≻ y for all y ∈ M \ {x},
while the latter implies that y ▷◁ z for all y,z ∈ M \{x}. These show that the svc representation
holds. Any y ∈ M \{x} is dominated by x and does not dominate any products, so ρy(M) = 0
is represented by svc. Similarly, x dominates all products, so ρx(M) = 1 is represented by svc.

Therefore, assume further that ρx(M) < 1 for all x ∈ M with the previous assumption that
ρs(M) = 0 for some s ∈ M. Let me start by assuming there is a unique alternative s for which
ρs(M) = 0. This can be represented using svc. To see, note that the contrapositive of the if
part of Condition 5 implies that s is dominated by at least one product and does not dominate
any products. Hence, the representation follows trivially. Note that Condition 5 implies that
ρx(M) > 0 for some x only if x dominates another alternative (ρx(xy) = 1 for some y ∈ M) or
x is incomparable to all the remaining alternatives in M (ρx(xy) ∈ (0,1) for all y ∈ M \ {x}).
This implies that M either is a complete chain or consists of a chain and alternatives that are
incomparable to the rest. First, assume that the latter exists. Let z be an alternative that is
incomparable to the rest in M. By Condition 6:

ρx(M)

ρy(M)
=

ρx(M \{z})
ρy(M \{z})

for any x,y such that ρx(M),ρy(M)> 0. Assume wlog that ρx(xy) = 1, so x is revealed to dom-
inate y. By the induction assumption, ρx(M \ {z}) and ρy(M \ {z}) have svc representations.
Furthermore, note that D(a,M) = D(a,M \ {z}) given z is incomparable to other products.
Thus:

ρx(M)

ρy(M)
=

∑x⪰a
u(a)

u(M\{z}) ·
v(x)

v(D(a,M\{z})

∑y⪰a
u(a)

u(M\{z}) ·
v(y)

v(D(a,M\{z})

=
v(x)
v(y)

·
∑x⪰a

u(a)
v(D(a,M\{z}))

∑y⪰a
u(a)

v(D(a,M\{z}))

=

v(x)
u(M)

v(y)
u(M)

·
∑x⪰a

u(a)
v(D(a,M))

∑y⪰a
u(a)

v(D(a,M))

=
∑x⪰a

u(a)
u(M) ·

v(x)
v(D(a,M))

∑y⪰a
u(a)
u(M) ·

v(y)
v(D(a,M))

Summing over all x ̸= y in M, one gets:

1−ρy(M)

ρy(M)
=

1−∑y⪰a
u(a)
u(M) ·

v(y)
v(D(a,M))

∑y⪰a
u(a)
u(M) ·

v(y)
v(D(a,M))

which implies that ρy(M) = ∑y⪰a
u(a)
u(M) ·

v(y)
v(D(a,M)) . Since ρs(M) = 0 for a unique alternative,

there is no alternative that s dominates and s is dominated at least by one alternative in M by
Condition 5.
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Now assume that there is no alternative that is incomparable to the rest. Consider the menu
M \{s}. By the inductive step, ρ here has a representation in terms of pvc. Because ρs(M) = 0,
there is no alternative that is dominated by s in M: so, any alternative t ̸= s in M either dominates
s or incomparable to it. Recall the definition of φ :

φx(s,M) =


1 if x ⪰ s & D(s,M)⊆ {x}
( 1

gs(M))ρx(M)− (1−gs(M)
gs(M) )ρx(M \{s}) if {x} ⊂ D(s,M)

0 o.w.

By the inductive step, ρx(M \{s}) has a pvc representation:

ρx(M \{s}) = ∑
x⪰y:y∈M\{s}

gy(M \{s}) ·φx(y,M \{s})

First, consider the case when x is incomparable to s. By Condition 9:

gx(M)

gx(M \{s})
=

ρx(M)

ρx(M \{s})

Also by the same condition:

1−gs(M) =
gy(M)

gy(M \{s})
for any y ∈ M \{s}. Note that these imply:

(1−gs(M))ρx(M \{s}) = gx(M)

gx(M \{s})

(1−gs(M))ρx(M \{s}) = gx(M)

gx(M \{s})
ρx(M \{s})

=
ρx(M)

ρx(M \{s})
·ρx(M \{s})

= ρx(M)

Also:

(1−gs(M))ρx(M \{s}) = (1−gs(M)) ∑
x⪰y:y∈M\{s}

gy(M \{s}) ·φx(y,M \{s})

= ∑
x⪰y:y∈M\{s}

gy(M)

gy(M \{s})
·gy(M \{s}) ·φx(y,M \{s})

= ∑
x⪰y:y∈M\{s}

gy(M) ·φx(y,M \{s})

= ∑
x⪰y:y∈M

gy(M) ·φx(y,M)

where the last line follows because s does not dominate any y ∈ M \{s}. These show that:

ρx(M) = ∑
x⪰y:y∈M

gy(M) ·φx(y,M)

which shows that the representation holds in this case x is incomparable to s.
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Now assume that x dominates s. Consider:

(1−gs(M))ρx(M \{s})+gs(M)φx(s,M)

By the definition of φ in this case:

(1−gs(M))ρx(M \{s})+gs(M)φx(s,M)

= (1−gs(M))ρx(M \{s})+gs(M)(
1

gs(M)
)ρx(M)− (

1−gs(M)

gs(M)
)ρx(M \{s})

= (1−gs(M))ρx(M \{s})+ρx(M)− (1−gs(M))ρx(M \{s})
= ρx(M)

Again using the inductive step, ρx(M \{s}) has a representation in terms of pvc. I also showed
above that:

(1−gs(M))ρx(M \{s}) = ∑
x⪰y:y∈M

gy(M) ·φx(y,M)

So:
ρx(M) = (1−gs(M))ρx(M \{s})+gs(M)φx(s,M)

= ∑
x⪰y:y∈M\{s}

gy(M) ·φx(y,M)+gs(M)φx(s,M)

= ∑
x⪰y:y∈M

gy(M) ·φx(y,M)

which shows that ρ is represented by pvc also in this case. The same logic applies to multiple
alternatives with zero choice probability. Therefore, one can apply the same reasoning above
and reach the conclusion using inductive step. This concludes the proof.

A.4 Further Related Literature

Dutta [12] defined a procedural model which results in stochastic choice relying on studies in
eyetracking. The DM is able to do binary comparisons only, and the order of these comparisons
depend on the difficulty of the comparisons. Let ≻ be the strict preference relation of the DM,
and P be an ordered partition of ≻ such that P = {Pi}K

i=1 and P0 = /0. Faced with a menu M,
the DM makes all comparisons in the order imposed by P relevant to M. The following is the
recursive formulation used by Dutta:

rP
0 (M) := M

...

rP
i+1(M) := {x ∈ rP

i (M) : ∀y ∈ rP
i (M) (y,x) /∈ Pi}

Let π be a stopping function which models the inability of the DM to complete all binary com-
parisons. If this was the case, then the procedure would reduce to the deterministic choice. Let
K∗(M) be the final cell of the partition that reduces the set of surviving options to a singleton.
Define the stopping function as a mapping π : (P∪P0)→ (0,1) which is a probability distri-
bution such that π(PK∗(M),M) > 0 for all M. The DM chooses each alternative that survives
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the iterated elimination with equal probability. The choice rule gradual pairwise stochastic
choice (gpsc) is then defined as:

ρ
gpsc
x (M) :=

{
∑{i:x∈rP

i (M)}π(Pi,M) · 1
|rP

i (M)| if x ∈ M

0 o.w.

To see that svc is not nested by gpsc, I am going to use an axiom characterizing this model,
called the unique best. According to this, for all menus M ∈ X, there is a unique best alternative
x such that ρx(M) > ρy(M) for all y ̸= x. To see that this is violated, just consider x,y,z such
that x ≻ y ▷◁ z. Note that ρx(xyz) = u(xy)

u(xyz) and ρz(xyz) = u(z)
u(xyz) . These choice probabilities are

equal to each other when u(xy) = u(z), so svc can violate this condition. The second axiom is
called sWARP, which is formulated using the notion of stochastic revealed preference defined
in the model. Let x be stochastically revealed preferred to y (denoted x ≫ρ y) if there is a
menu M ∋ x,y such that ρx(M) ≥ ρz(M) for all z ̸= x in M. sWARP says that if x ≫ρ y, then
¬(y ≫ρ x). Consider the same example, but now assume that u(xy)> u(z)> u(x). This implies
that ρx(xz)< ρz(xz) and ρz(xyz)< ρx(xyz), and hence sWARP is violated. These show that svc
is not nested by gpsc. Because gpsc can accommodate violations of MST as shown in Dutta,
svc does not nest gpsc.

Valkanova [51] developed a model of Markov choice in which the DM compares the alterna-
tives sequentially in discrete time. The DM starts with alternative x randomly with probability
πx(M). Then, with some transition probability θxy(M) she checks the alternative y. The DM
chooses y from {x,y} with probability qxy and x with probability 1− qxy, which implies that
τxy(M), the choice probability of y given x is the starting point, is equal to πx(M) · qxy. The
probability that x is chosen in M is equal to 1−∑y∈M\{x} τxy. Importantly, it is assumed that
transition probabilities satisfy IIA:

τxy(xy) · τyx(M) = τyx(xy) · τxy(M)

This process repeats consecutively and terminates at each period with some positive probability
a > 0. The choice procedure generates by the following stochastic choice rule:

ρ
msc(a,π(M),θ(M)) = aπ(M)(1− (1−a)τ(M))−1

which is called the baseline msc. In the limit as a → 0, provided that the markov chain is
ergodic, the limiting msc as the unique stationary distribution exists and it can be only char-
acterized by the transition matrix τ . There are two types of a limiting msc which are called
reversible and nonreversible, which are defined using the Kolomogorov’s necessary and suffi-
cient conditions for reversible Markov chains. Finally, a limiting msc for which IIA condition
does not hold, but the DM is able to explore the whole choice set and all alternatives are com-
parable is called ergodic limiting msc. I am going to show that svc is not nested by the limiting
msc model, since this is the only model for which a characterization is provided. To demon-
strate this, I need to provide the main definition used for characterizing both models:

Definition 14. x ≻M y iff ρx(xy) ·ρy(M)> ρy(xy) ·ρx(M) for any M ⊇ {x,y}.

It is shown that reversible limiting MSC is characterized by the acyclicity of ≻M, while non-
reversible limiting MSC is characterized by the cyclicity of the same binary relation. svc can
accommodate both types of behavior for ≻M. For the acyclicity, recall that Luce rule is a special
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case of svc when all alternatives are incomparable. It is also shown in msc that Luce rule is a
special case of reversible MSC with positive transition probabilities. Thus, it is straightforward
to see that acyclicity is satisfied for Luce rule. For an example of a cyclic ≻M, let M = {x,y,z, t}
such that x ≻ y ≻ t and z ▷◁ x,y. I am going to show that x ≻M y ≻M z ≻M x. First, observe
that ρx(xy) = 1 and ρy(xy) = 0, which shows x ≻M y. On the other hand, ρy(yz) = u(y)

u(yz) and

ρz(yz) = u(z)
u(yz) implies that ρy(yz) ·ρz(M) > ρz(yz) ·ρy(M) iff u(y)

u(z) >
ρy(M)
ρz(M) . The latter is equal

to:
ρy(M)

ρz(M)
=

u(t)
u(M) ·

u(y)
u(xy)

u(z)
u(M)

=
u(t)u(y)

u(z)u(xy)

which implies that the required inequality holds iff 1> u(t)
u(xy) , which follows by the compatibility

of u with ⪰. Finally, I need to show that z ≻M x. To see this, note that this inequality holds iff
u(z)
u(x) >

ρz(M)
ρx(M) . The latter is equal to:

ρz(M)

ρx(M)
=

u(z)
u(M)

u(xy)
u(M) +

u(t)
u(M) ·

u(x)
u(xy)

=
u(z)u(xy)

u2(xy)+u(x)u(t)

which implies that the inequality holds iff:

1
u(x)

>
u(xy)

u(x)u(t)+u2(xy)

This inequality holds because u2(xy)> u2(x)+u(xy), and therefore ≻M has a cycle. The final
conclusion about ergodic msc follows because it says that all binary choice probabilities should
be interior.

Finally, I will discuss the model of Ravid and Steverson [40]. In their model, the DM chooses a
focal option with uniform probability, and then compares this option with other option in pairs
sequentially, randomly and independently. Let π(x,y) denote the probability that x passes a
comparison with y, which does not need to be symmetric. For convenience, they also assume
that π ∈ [0,1). The choice probability of x in M is defined as:

ρ
f tc

x (M) :=
Πy∈M\{x}π(x,y)

∑y∈M[Πz∈M\{y}π(y,z)]

This choice rule is characterized by three features called strong expansion (SE), independence
of shared alternatives (ISA), and finally cancellation without the full support assumption on
the comparison mapping π , from which I will only use SE:

∀x ∈ M∩M′ : ρx(M)> 0 & ρx(M′)> 0 ⇐⇒ ρx(M∪M′)> 0

To see svc is not nested by ftc, consider x ≻ y ≻ z. Observe that ρy(xyz) > 0 since y strictly
dominates z, while ρy(xy) = 0. This violates the if part of strong expansion. These models have
nonempty intersection since Luce is a special case of ftc. To see that svc does not nest ftc, it is
enough to note that MM is nested by ftc, which is not true for svc.
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